首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   721篇
  免费   72篇
  2022年   4篇
  2021年   7篇
  2020年   10篇
  2019年   3篇
  2018年   10篇
  2017年   10篇
  2016年   22篇
  2015年   30篇
  2014年   43篇
  2013年   55篇
  2012年   70篇
  2011年   52篇
  2010年   34篇
  2009年   32篇
  2008年   37篇
  2007年   46篇
  2006年   35篇
  2005年   41篇
  2004年   52篇
  2003年   55篇
  2002年   25篇
  2001年   7篇
  2000年   6篇
  1999年   10篇
  1998年   7篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1994年   3篇
  1992年   5篇
  1991年   9篇
  1990年   3篇
  1989年   4篇
  1988年   6篇
  1987年   6篇
  1986年   4篇
  1985年   2篇
  1983年   2篇
  1982年   4篇
  1981年   4篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1975年   3篇
  1973年   4篇
  1971年   2篇
  1965年   1篇
  1963年   2篇
  1957年   1篇
  1954年   1篇
排序方式: 共有793条查询结果,搜索用时 31 毫秒
81.
82.
Virulizin, a novel biological response modifier, has demonstrated significant antitumor efficacy in a variety of human tumor xenograft models including melanoma, pancreatic cancer, breast cancer, ovarian cancer and prostate cancer. The significant role of macrophages and NK (Natural killer) cells was implicated in the antitumor mechanism of Virulizin where expansion as well as increased activity of macrophages and NK cells were observed in mice treated with Virulizin. Depletion of macrophages compromised Virulizin-induced NK1.1+ cell infiltration into xenografted tumors and was accompanied by reduced antitumor efficacy. In the present study, involvement of macrophages in NK cell activation was investigated further. We found that depletion of NK cells in CD-1 nude mice by anti-ASGM1 antibody significantly compromised the antitumor activity of Virulizin. Cytotoxicity of NK cells isolated from Virulizin-treated mice was enhanced against NK-sensitive YAC-1 cells and C8161 human melanoma cells, but not against NK-insensitive P815 cells. An increased level of IL-12 was observed in the serum of mice treated with Virulizin. IL-12 mRNA and protein levels were also increased in peritoneal macrophages isolated from Virulizin-treated mice. Moreover, Virulizin-induced cytotoxic activity of NK cells isolated from the spleen was abolished when an IL-12 neutralizing antibody was co-administered. In addition, depletion of macrophages in mice significantly impaired Virulizin-induced NK cell cytotoxicty. Taken together, the results suggest that Virulizin induces macrophage IL-12 production, which in turn stimulates NK cell-mediated antitumor activity.  相似文献   
83.
CAG and CTG repeat expansions are the cause of at least a dozen inherited neurological disorders. In these so-called "dynamic mutation" diseases, the expanded repeats display dramatic genetic instability, changing in size when transmitted through the germline and within somatic tissues. As the molecular basis of the repeat instability process remains poorly understood, modeling of repeat instability in model organisms has provided some insights into potentially involved factors, implicating especially replication and repair pathways. Studies in mice have also shown that the genomic context of the repeat sequence is required for CAG/CTG repeat instability in the case of spinocerebellar ataxia type 7 (SCA7), one of the most unstable of all CAG/CTG repeat disease loci. While most studies of repeat instability have taken a candidate gene approach, unbiased screens for factors involved in trinucleotide repeat instability have been lacking. We therefore attempted to use Drosophila melanogaster to model expanded CAG repeat instability by creating transgenic flies carrying trinucleotide repeat expansions, deriving flies with SCA7 CAG90 repeats in cDNA and genomic context. We found that SCA7 CAG90 repeats are stable in Drosophila, regardless of context. To screen for genes whose reduced function might destabilize expanded CAG repeat tracts in Drosophila, we crossed the SCA7 CAG90 repeat flies with various deficiency stocks, including lines lacking genes encoding the orthologues of flap endonuclease-1, PCNA, and MutS. In all cases, perfect repeat stability was preserved, suggesting that Drosophila may not be a suitable system for determining the molecular basis of SCA7 CAG repeat instability.  相似文献   
84.
Colonization of two plant species by Glomus intraradices was studied to investigate the two morphological types (Arum and Paris), their symbiotic interfaces and metabolic activities. Root pieces and sections were stained to observe the colonization and metabolic activity of all mycorrhizal structures. There were no growth responses observed in the plants caused by mycorrhizal symbiosis. The two morphological types had a similar percentage of root colonized, but the Arum-type had higher metabolic activity. Most of the mycorrhizal structures (88%) showed succinate dehydrogenase activity; about half showed acid phosphatase activity; and a small percentage showed alkaline phosphatase activity. Phosphatase activity was highest in arbuscules and low in intercellular hyphae in the Arum-type colonization. In the Paris-type, hyphal coils and arbusculate coils showed a similar intermediate percentage of phosphatase activity. We conclude that acid phosphatase is more important than alkaline phosphatase in both colonization types. We discuss the possibility that, whereas arbuscules in Arum-type are the main site for phosphorus release to the host plant, both the hyphal and arbusculate coils may be involved in the Paris-type.  相似文献   
85.
During lymphocyte migration, engagement of VCAM-1 stimulates the generation of endothelial cell-derived reactive oxygen species (ROS) and activation of matrix metalloproteinases, facilitating endothelial retraction. Because bilirubin is a potent antioxidant, we examined the hypothesis that this bile pigment inhibits VCAM-1-dependent cellular events. The migration of isolated murine splenic lymphocytes across monolayers of murine endothelial cell lines (which constitutively express VCAM-1) is significantly inhibited by physiological concentrations of bilirubin, in the absence of an effect on lymphocyte adhesion. Bilirubin administration also suppresses VCAM-1-stimulated ROS generation and reduces endothelial cell matrix metalloproteinase activity. In a murine asthma model characterized by VCAM-1-dependent airway inflammation, treatment of C57BL6/J mice with i.p. bilirubin decreases the total leukocyte count in the lung parenchyma and lavage fluid, through specific inhibition of eosinophil and lymphocyte infiltration. Blood eosinophil counts were increased in bilirubin-treated animals, while VCAM-1 expression in the capillary endothelium and cytokine levels in both lung lavage and supernatants from cultured lymph node lymphocytes were unchanged, suggesting that bilirubin inhibits leukocyte migration. Conclusion: bilirubin blocks VCAM-1-dependent lymphocyte migration in vitro and ameliorates VCAM-1-mediated airway inflammation in vivo, apparently through the suppression of cellular ROS production. These findings support a potential role for bilirubin as an endogenous immunomodulatory agent.  相似文献   
86.
Recent studies have demonstrated that both mouse and human alpha beta TCR(+)CD3(+)NK1.1(-)CD4(-)CD8- double-negative regulatory T (DN Treg) cells can suppress Ag-specific immune responses mediated by CD8+ and CD4+ T cells. To identify molecules involved in DN Treg cell function, we generated a panel of murine DN Treg clones, which specifically kill activated syngeneic CD8+ T cells. Through serial cultivation of DN Treg clones, mutant clones arose that lost regulatory capacity in vitro and in vivo. Although all allogeneic cardiac grafts in animals preinfused with tolerant CD4/CD8 negative 12 DN Treg clones survived over 100 days, allograft survival is unchanged following infusion of mutant clones (19.5 +/- 11.1 days) compared with untreated controls (22.8 +/- 10.5 days; p < 0.001). Global gene expression differences between functional DN Treg cells and nonfunctional mutants were compared. We found 1099 differentially expressed genes (q < 0.025%), suggesting increased cell proliferation and survival, immune regulation, and chemotaxis, together with decreased expression of genes for Ag presentation, apoptosis, and protein phosphatases involved in signal transduction. Expression of 33 overexpressed and 24 underexpressed genes were confirmed using quantitative real-time PCR. Protein expression of several genes, including Fc epsilon RI gamma subunit and CXCR5, which are >50-fold higher, was also confirmed using FACS. These findings shed light on the mechanisms by which DN Treg cells down-regulate immune responses and prolong cardiac allograft survival.  相似文献   
87.
88.
Human papillomavirus 16 is a causative agent of most cases of cervical cancer and has also been implicated in the development of some head and neck cancers. The early viral E6 gene codes for two alternatively spliced isoforms, E6large and E6*. We have previously demonstrated the differential effects of E6large and E6* binding on the expression and stability of procaspase 8, a key mediator of the apoptotic pathway. Additionally, we have reported that E6 binds to the FADD death effector domain (DED) at a novel E6 binding domain. Sequence similarities between the FADD and procaspase 8 DEDs suggested a specific region for E6large/procaspase 8 binding, which was subsequently confirmed by mutational analysis as well as by the ability of peptides capable of blocking E6/FADD binding to also block E6large/caspase 8 binding. However, the binding of the smaller isoform, E6*, to procaspase 8 occurs at a different region, as deletion and point mutations that disrupt E6large/caspase 8 DED binding do not disrupt E6*/caspase 8 DED binding. In addition, peptide inhibitors that can block E6large/procaspase 8 binding do not affect the binding of E6* to procaspase 8. These results demonstrate that the residues that mediate E6*/procaspase 8 DED binding localize to a different region on the protein and employ a separate binding motif. This provides a molecular explanation for our initial findings that the two E6 isoforms affect procaspase 8 stability in an opposing manner.The relationship between viruses and cancers is reflected in the observation that viral infections account for approximately 10 to 15% of the cancer burden worldwide (6, 60). This makes viral infections one of the preventable risk factors of cancer. Viruses are associated with several human malignancies, including hepatitis B and C virus-associated hepatocellular carcinomas (48), Epstein-Barr virus-associated nasopharyngeal carcinomas and lymphomas (36), and human T-cell leukemia virus-associated adult T-cell leukemia (8, 28). Although there is a correlation between infection and the onset of cancer, the frequency of infection supersedes the incidence of cancer inception, suggesting that the presence of the virus alone is not sufficient to trigger carcinogenesis. Progression from viral infection to tumor development therefore requires additional environmental and cellular factors in addition to the expression and activity of virus-encoded proteins (40).High-risk strains of human papillomavirus (HPV) (high-risk HPV [HR-HPV]) such as HPV16 and HPV18 have been implicated in most cases of cervical cancer and also in a subset of head and neck cancers (24, 26, 39). Infection with oncogenic strains of HPV represents up to 75% of all infections. Furthermore, 1/10 of all deaths among women worldwide can be attributed to HR-HPV-related cancers (44, 45). The key players in promoting cell transformation and immortalization following HPV infection are the viral early proteins E6 and E7. These proteins are well known for their ability to interact with the tumor suppressor p53 or members of the retinoblastoma family of proteins including pRb, p107, and p130, respectively (3, 17, 41). In addition to p53, HR-HPV E6 (HR-E6) binds to a number of cellular proteins involved in various aspects of cell proliferation and virus survival (reviewed in references 34 and 53). Our laboratory has reported that E6 binds to key mediators of the apoptotic pathway including tumor necrosis factor (TNF) R1 (22), the FADD death effector domain (DED) (21), and the procaspase 8 DED (20) and, in doing so, impedes apoptosis from taking place.As noted above, HR-E6 binds to TNF R1, blocking the adaptor molecule TRADD from binding to the membrane receptor. Similarly, the binding of HR-E6 to the FADD DED, a molecule common to the TNF-, Fas L-, and TRAIL-mediated extrinsic pathways of apoptosis, leads to the accelerated degradation of FADD and thereby inhibits the binding of additional downstream molecules necessary for programmed cell death. Additionally, we have reported that HR-E6 binds to procaspase 8, another molecule common to all three receptor-mediated pathways. The importance of procaspase 8 can be demonstrated by the many proteins produced by viruses to either inactivate or inhibit this apoptotic mediator in order to evade clearance by the host immune response. Such proteins include the herpes simplex virus R1 subunit that interferes with caspase 8 activation (31); the molluscum contagiosum virus MC159 protein that binds to the DEDs of both FADD and procaspase 8, thereby inhibiting their interaction (25); the human herpesvirus 8 FLICE protein that obstructs procaspase 8 cleavage and prevents its activation (4); and the cowpox virus serpin CrmA, which, along with the human cytomegalovirus UL136 proteins, inhibits caspase 8 activation (50, 56). In a like manner, HR-HPV16 produces the early protein E6 that binds to procaspase 8. Interestingly, however, we have found that the two splice products of the E6 gene, E6large, a protein of about 16 kDa, and E6*, a protein less than half the size of E6large, bind to and affect procaspase 8 stability differentially. While the large isoform accelerates the degradation of procaspase 8, leading to its destabilization, the short isoform leads to the stabilization of protein expression and an increase in activity. These observations suggest that the bindings of these two E6 isoforms have different functional consequences and may well localize to different regions on procaspase 8.We have previously identified a novel E6 binding site on the FADD DED (54). Based on sequence comparisons between the DEDs of FADD and procaspase 8, we proposed that the binding motif that mediates oncoprotein binding to both proteins would be similar. To test this possibility, we performed a series of mutational and peptide competitor-based experiments and discovered that the motifs on caspase 8 and on FADD that mediate binding between E6 and its cellular partner are indeed similar. Interestingly, however, the motif by which E6* binds to procaspase 8 is located in another region of the protein. These findings provide a molecular explanation for our previously reported observations concerning the differential effects of the binding of each isoform to the procaspase 8 DED. These findings also demonstrate the ability of peptide inhibitors to successfully impair E6 binding to its cellular targets and contribute to the discovery of therapeutic agents that are effective against cervical cancer.  相似文献   
89.
Malignant transformation of melanocytes leads to melanoma, the most fatal form of skin cancer. Ultraviolet radiation (UVR)-induced DNA photoproducts play an important role in melanomagenesis. Cutaneous melanin content represents a major photoprotective mechanism against UVR-induced DNA damage, and generally correlates inversely with the risk of skin cancer, including melanoma. Melanoma risk is also determined by susceptibility genes, one of which is the melanocortin 1 receptor (MC1R) gene. Certain MC1R alleles are strongly associated with melanoma. We hereby present experimental evidence for the role of two melanoma risk factors, constitutive pigmentation, as assessed by total melanin, eumelanin and pheomelanin contents, and MC1R genotype and function, in determining the induction and repair of DNA photoproducts in cultured human melanocytes after irradiation with increasing doses of UVR. We found that total melanin and eumelanin contents (MC and EC) correlated inversely with the extent of UVR-induced growth arrest, apoptosis and induction of cyclobutane pyrimidine dimers (CPD), but not with hydrogen peroxide release in melanocytes expressing functional MC1R. In comparison, melanocytes with loss-of-function MC1R, regardless of their MC or EC, sustained more UVR-induced apoptosis and CPD, and exhibited reduced CPD repair. Therefore, MC, mainly EC, and MC1R function are independent determinants of UVR-induced DNA damage in melanocytes.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号