首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1047篇
  免费   73篇
  国内免费   2篇
  1122篇
  2023年   6篇
  2022年   13篇
  2021年   15篇
  2020年   15篇
  2019年   17篇
  2018年   24篇
  2017年   19篇
  2016年   35篇
  2015年   59篇
  2014年   62篇
  2013年   87篇
  2012年   86篇
  2011年   84篇
  2010年   61篇
  2009年   47篇
  2008年   67篇
  2007年   65篇
  2006年   72篇
  2005年   37篇
  2004年   42篇
  2003年   45篇
  2002年   33篇
  2001年   5篇
  2000年   8篇
  1999年   8篇
  1998年   5篇
  1997年   8篇
  1996年   12篇
  1995年   6篇
  1994年   4篇
  1993年   6篇
  1992年   5篇
  1991年   9篇
  1990年   7篇
  1989年   3篇
  1987年   3篇
  1985年   3篇
  1984年   8篇
  1982年   6篇
  1981年   5篇
  1980年   1篇
  1979年   4篇
  1978年   1篇
  1976年   2篇
  1975年   3篇
  1972年   1篇
  1970年   1篇
  1969年   2篇
  1968年   1篇
  1949年   1篇
排序方式: 共有1122条查询结果,搜索用时 11 毫秒
31.
This study was prompted by increasing concerns about ecological damage and human health threats derived by persistent contamination of water and soil with herbicides, and emerging of bio-sensing technology as powerful, fast and efficient tool for the identification of such hazards. This work is aimed at overcoming principal limitations negatively affecting the whole-cell-based biosensors performance due to inadequate stability and sensitivity of the bio-recognition element. The novel bio-sensing elements for the detection of herbicides were generated exploiting the power of molecular engineering in order to improve the performance of photosynthetic complexes. The new phenotypes were produced by an in vitro directed evolution strategy targeted at the photosystem II (PSII) D1 protein of Chlamydomonas reinhardtii, using exposures to radical-generating ionizing radiation as selection pressure. These tools proved successful to identify D1 mutations conferring enhanced stability, tolerance to free-radical-associated stress and competence for herbicide perception. Long-term stability tests of PSII performance revealed the mutants capability to deal with oxidative stress-related conditions. Furthermore, dose-response experiments indicated the strains having increased sensitivity or resistance to triazine and urea type herbicides with I50 values ranging from 6×10−8 M to 2×10−6 M. Besides stressing the relevance of several amino acids for PSII photochemistry and herbicide sensing, the possibility to improve the specificity of whole-cell-based biosensors, via coupling herbicide-sensitive with herbicide-resistant strains, was verified.  相似文献   
32.
33.
Renal tubular diseases may present with osteopenia, osteoporosis or osteomalacia, as a result of significant derangements in body electrolytes. In case of insufficient synthesis of calcitriol, as in renal failure, the more complex picture of renal osteodystrophy may develop. Hypothetically, also disturbed renal production of BMP-7 and Klotho could cause bone disease. However, the acknowledgment that osteocytes are capable of producing FGF23, a phosphaturic hormone at the same time modulating renal synthesis of calcitriol, indicates that it is also bone that can influence renal function. Importantly, a feed-back mechanism exists between FGF23 and calcitriol synthesis, while Klotho, produced by the kidney, determines activity and selectivity of FGF23. Identification of human diseases linked to disturbed production of FGF23 and Klotho underlines the importance of this new bone-kidney axis. Kidney and bone communicate reciprocally to regulate the sophisticated machinery responsible for divalent ions homeostasis and for osseous or extraosseous mineralisation processes.  相似文献   
34.
We describe AMIN (Amidase N-terminal domain), a novel protein domain found specifically in bacterial periplasmic proteins. AMIN domains are widely distributed among peptidoglycan hydrolases and transporter protein families. Based on experimental data, contextual information and phyletic profiles, we suggest that AMIN domains mediate the targeting of periplasmic or extracellular proteins to specific regions of the bacterial envelope.  相似文献   
35.
We have investigated the effect of hypothalamo-pituitary disconnection in the rat on the growth hormone (GH) responsiveness to human pancreatic GH-releasing factor (hpGRF). Adult female rats, sham-operated (sham-op) or bearing a complete mechanical ablation of the mediobasal hypothalamus (MBH-A) were challenged, while under urethane anesthesia, with hpGRF-40 (20,100,500 ng/rat i.v.) at different time intervals after surgery. In sham-op rats only 500 ng/rat of hpGRF-40 stimulated GH release, while in 1-and 7-day MBH-A rats the stimulation also occurred with the lower hpGRF doses and the rise in plasma GH was greater than in sham-op controls. Twenty-one and 42 days after the placing of the lesions the GH response to hpGRF-40 was still present at the 500 ng/rat dose, though it was smaller than in sham-op controls. Evaluation of pituitary GH content demonstrated a progressive and rapid decline starting the first day after the placing of the lesions. These data indicate that GH responsiveness to hpGRF is: 1) enhanced in the anterior pituitary shortly after hypothalamo-pituitary disconnection and, 2) despite a striking reduction of the pituitary GH stores, it is maintained after these lesions.The physiologic growth hormone (GH) releaser in the rat is GH-releasing factor and, recently, a group of peptides has been characterized from human pancreatic tumors (hpGRFs) (1,2) which are potent and specific GH-releasers in both animals (3) and man (4). The availability of these peptides, which show a high degree of homology with the physiologic rat hypothalamic GRF (5), offers the unique opportunity to assess somatotrope responsiveness to GRF molecules in rats with hypothalamo-pituitary disconnection.In this study we have first evaluated the GH pituitary responsiveness to increasing doses of hpGRF-40 in rats following mechanical ablation of the mediobasal hypothalamus (6). These rats, by definition, lack the effect of both central nervous system (CNS) inhibitory (e.g. somatostatin) and stimulatory (e.g. GRF) influences to GH release. With the aim to ascertain how the lack of these two opposing inputs reflects on the secretory capacity of the somatotropes, we also investigated the GH response to hpGRF-40 at different time intervals after the lesioning. In a study in rats with electrolytic lesions of the ventromedial-arcuate region of the hypothalamus Tannenbaum et al (7) had shown persistence of the GH response to huge doses of a hpGRF analog.  相似文献   
36.
37.
38.
Sexual selection influences the evolution of morphological traits that increase the likelihood of monopolizing scarce resources. When such traits are used during contests, they are termed weapons. Given that resources are typically linked to monopolizing mating partners, theory expects only males to bear weapons. In some species, however, females also bear weapons, although typically smaller than male weapons. Understanding why females bear smaller weapons can thus help us understand the selective pressures behind weapon evolution. However, most of our knowledge comes from studies on weapon size, while the biomechanics of weapons, such as the size of the muscles, efficiency, and shape are seldom studied. Our goal was to test if the theoretical expectations for weapon size sexual dimorphism also occur for weapon biomechanics using two aeglid crab species. Males of both species had larger claws which were also stronger than female claws. Male claws were also more efficient than females' claws (although we used only one species in this analysis). For weapon shape, though, only one species differed in the mean claw shape. Regarding scaling differences, in both species, male claws had higher size scaling than females, while only one species had a higher shape scaling. However, male weapons did not have higher scaling regarding strength and efficiency than females. Thus, males apparently allocate more resources in weapons than females, but once allocated, muscle and efficiency follow a similar developmental pathway in both sexes. Taken together, our results show that sexual dimorphism in weapons involves more than differences in size. Shape differences are especially intriguing because we cannot fully understand its causes. Yet, we highlight that such subtle differences can only be detected by measuring and analysing weapon shape and biomechanical components. Only then we might better understand how weapons are forged.  相似文献   
39.
This paper is the first report on the use of the electron microscopy autoradiography technique to detect metabolically tritium labeled sphingolipids in intact cells in culture.To label cell sphingolipids, human fibroblasts in culture were fed by a 24 hours pulse, repeated 5 times, of 3×10–7 M [1-3H]sphingosine. [1-3H]sphingosine was efficently taken up by the cells and very rapidly used for the biosynthesis of complex sphingolipids, including neutral glycolipids, gangliosides, ceramide and sphingomyelin. The treatment with [1-3H]sphingosine did not induce any morphological alteration of cell structures, and well preserved cells, plasma membranes, and intracellular organelles could be observed by microscopy.Ultrathin sections from metabolic radiolabeled cells were coated with autoradiographic emulsion. One to four weeks of exposition resulted in pictures where the location of radioactive sphingolipids was evidenced by the characteristic appearance of silver grains as irregular coiled ribbons of metallic silver. Radioactive sphingolipids were found at the level of the plasma membranes, on the endoplasmic reticulum and inside of cytoplasmic vesicles. Thus, electron microscopy autoradiography is a very useful technique to study sphingolipid-enriched membrane domain organization and biosynthesis.  相似文献   
40.
The mitochondrion is emerging as a key organelle in stem cell biology, acting as a regulator of stem cell pluripotency and differentiation. In this study we sought to understand the effect of mitochondrial complex III inhibition during neuronal differentiation of mouse embryonic stem cells. When exposed to antimycin A, a specific complex III inhibitor, embryonic stem cells failed to differentiate into dopaminergic neurons, maintaining high Oct4 levels even when subjected to a specific differentiation protocol. Mitochondrial inhibition affected distinct populations of cells present in culture, inducing cell loss in differentiated cells, but not inducing apoptosis in mouse embryonic stem cells. A reduction in overall proliferation rate was observed, corresponding to a slight arrest in S phase. Moreover, antimycin A treatment induced a consistent increase in HIF-1α protein levels. The present work demonstrates that mitochondrial metabolism is critical for neuronal differentiation and emphasizes that modulation of mitochondrial functions through pharmacological approaches can be useful in the context of controlling stem cell maintenance/differentiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号