首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1027篇
  免费   71篇
  国内免费   2篇
  1100篇
  2023年   6篇
  2022年   13篇
  2021年   15篇
  2020年   15篇
  2019年   17篇
  2018年   23篇
  2017年   17篇
  2016年   35篇
  2015年   59篇
  2014年   61篇
  2013年   87篇
  2012年   84篇
  2011年   82篇
  2010年   60篇
  2009年   45篇
  2008年   66篇
  2007年   62篇
  2006年   70篇
  2005年   35篇
  2004年   40篇
  2003年   45篇
  2002年   32篇
  2001年   5篇
  2000年   8篇
  1999年   8篇
  1998年   5篇
  1997年   8篇
  1996年   12篇
  1995年   6篇
  1994年   4篇
  1993年   6篇
  1992年   5篇
  1991年   9篇
  1990年   7篇
  1989年   3篇
  1987年   3篇
  1985年   3篇
  1984年   8篇
  1982年   6篇
  1981年   5篇
  1980年   1篇
  1979年   4篇
  1978年   1篇
  1976年   2篇
  1975年   3篇
  1972年   1篇
  1970年   1篇
  1969年   2篇
  1968年   1篇
  1949年   1篇
排序方式: 共有1100条查询结果,搜索用时 15 毫秒
41.
For the first time in human history, more than half of the world''s population lives in urban areas and this is projected to increase to two-thirds by 2030. This increased urbanity of the world''s population has substantial public health implications. Nearly a century of research has shown higher risk of mental disorder among persons living in urban versus rural areas. Epidemiologic research has documented that associations between particular features of the urban environment, such as concentrated disadvantage, residential segregation and social norms, contribute to the risk of mental illness. We propose that changes in DNA methylation may be one potential mechanism through which features of the urban environment contribute to psychopathology. Recent advances in animal models and human correlation studies suggest DNA methylation as a promising mechanism that can explain how the environment “gets under the skin.” Aberrant DNA methylation signatures characterize mental disorders in community settings. Emerging evidence of associations between exposure to features of the environment and methylation patterns may lead toward the identification of mechanisms that explain the link between urban environments and mental disorders. Importantly, evidence that epigenetic changes are reversible offers new opportunities for ameliorating the impact of adverse urban environments on human health.Key words: urban environment, mental disorders, DNA methylation, epigenetics, posttraumatic stress disorder, depressionThe 20th century has been characterized by the world-wide movement of populations from rural to urban areas. For the first time in human history, more than half of the world''s population lives in urban areas and this is projected to increase to two-thirds by 2030. The movement of populations to urban environments is probably the most important demographic shift in the past century. In particular, the increased urbanity of the world''s population has substantial public health implications. A body of research has long shown that there are different burdens of disease and disability in urban vs. non-urban areas and more recent work has linked specific features of the urban environment to particular health indicators (for reviews of the literature about urban health see refs. 1 and 2).Some of the more promising work in this area concerns research that has shown relations between urbanity and mental disorders. There is more than a century of work that has shown higher risk of most mental disorders among persons living in urban versus rural areas.38 Early research proposed several factors that may explain this association including selective migration and social disorganization.3 For example, it has been proposed that persons within disadvantaged areas may have a more difficult time building and sustaining supportive social relationships, therefore increasing susceptibility to mental illness. Subsequent work has shown associations between particular features of the urban environment and risk of mental illness. Living in poorer urban neighborhoods is associated with greater risk of new episodes of depression compared to living in richer neighborhoods, even when accounting for individual income or exposure to stressful or adverse circumstances.6,9,10 Living in neighborhoods characterized by residential racial segregation is associated with a greater risk of depression and anxiety, compared to living in less segregated neighborhoods.11 Other evidence suggests that neighborhood collective efficacy and norms are associated with the risk of substance use disorders12 and suicide attempts,13 again when taking into account individual experiences.Coincident with the growing number of studies that have demonstrated links between features of the urban environment and mental health, there has been an increase in work that has sought to understand the mechanisms underlying these epidemiologic observations. In particular, there is an emerging interest in identifying biologic explanations that may clarify the link between features of the urban environment and individual mental health. Existing research has documented a role for changes in immune function,14 gene-environment interactions15 and psychological mechanisms,16 among others, that may explain the links between the urban environment and mental health. This paper adds to this growing field and proposes that changes in DNA methylation may be one potential mechanism through which features of the urban environment contribute to psychopathology.  相似文献   
42.
Paracoccidioidomycosis (PCM) is a systemic mycosis with lymphatic dissemination that is caused by Paracoccidioides species. Treatment of PCM consists of chemotherapeutics such as itraconazole, trimethoprim, sulfamethoxazole or amphotericin B. However, several studies are aiming to develop therapeutic alternatives for the treatment of fungal infection using new molecules as adjuvants. The single-chain variable fragments (scFv) from an antibody that mimics the main fungal component incorporated within poly(lactide-co-glycolic) acid (PLGA) nanoparticles helped treat the fungal disease. After expressing the scFv in Picchia pastoris (P. pastoris), the recombinant molecules were coupled with PLGA, and the BALB/c mice were immunized before or after infection with yeast Paracoccidioides brasiliensis (P. brasiliensis). Our results showed decreased disease progression and decreased fungal burden. Taken together, our results showed an increased of IFN-γ and IL-12 cytokine production and an increased number of macrophages and dendritic cells in the pulmonary tissue of BALB/c mice treated with a high concentration of our molecule. Our data further confirm that the scFv plays an important role in the treatment of experimental PCM.  相似文献   
43.

Background and Purpose

Longitudinal functional imaging studies of stroke are key in identifying the disease progression and possible therapeutic interventions. Here we investigate the applicability of real-time functional optoacoustic imaging for monitoring of stroke progression in the whole brain of living animals.

Materials and Methods

The middle cerebral artery occlusion (MCAO) was used to model stroke in mice, which were imaged preoperatively and the occlusion was kept in place for 60 minutes, after which optoacoustic scans were taken at several time points.

Results

Post ischemia an asymmetry of deoxygenated hemoglobin in the brain was observed as a region of hypoxia in the hemisphere affected by the ischemic event. Furthermore, we were able to visualize the penumbra in-vivo as a localized hemodynamically-compromised area adjacent to the region of stroke-induced perfusion deficit.

Conclusion

The intrinsic sensitivity of the new imaging approach to functional blood parameters, in combination with real time operation and high spatial resolution in deep living tissues, may see it become a valuable and unique tool in the development and monitoring of treatments aimed at suspending the spread of an infarct area.  相似文献   
44.
We found functionally male individuals in an otherwise hermaphroditic population of Tulipa pumila (Liliaceae) located in Tuscany (central Italy). We investigated the sex ratio of this population, followed by morphometric analyses of the scape, leaves and flowers, and tests on pollen germinability and seed number and mass, in order to infer which sexual strategy produced the observed co-occurrence of male and hermaphrodite individuals. We found that sex ratio deviated from 1:1, and functionally male individuals showed a smaller plant size and a reduced pollen fitness (germinability and siring ability) compared to hermaphrodites. These findings point to a resource-dependent sexual allocation strategy, probably associated with gender diphasy.  相似文献   
45.
46.
Sepsis is a major cause for death worldwide. Numerous interventional trials with agents neutralizing single proinflammatory mediators have failed to improve survival in sepsis and aseptic systemic inflammatory response syndromes. This failure could be explained by the widespread gene expression dysregulation known as “genomic storm” in these patients. A multifunctional polyspecific therapeutic agent might be needed to thwart the effects of this storm. Licensed pooled intravenous immunoglobulin preparations seemed to be a promising candidate, but they have also failed in their present form to prevent sepsis-related death. We report here the protective effect of a single dose of intravenous immunoglobulin preparations with additionally enhanced polyspecificity in three models of sepsis and aseptic systemic inflammation. The modification of the pooled immunoglobulin G molecules by exposure to ferrous ions resulted in their newly acquired ability to bind some proinflammatory molecules, complement components and endogenous “danger” signals. The improved survival in endotoxemia was associated with serum levels of proinflammatory cytokines, diminished complement consumption and normalization of the coagulation time. We suggest that intravenous immunoglobulin preparations with additionally enhanced polyspecificity have a clinical potential in sepsis and related systemic inflammatory syndromes.  相似文献   
47.
We refine the information available through the IPCC AR5 with regard to recent trends in global GHG emissions from agriculture, forestry and other land uses (AFOLU), including global emission updates to 2012. Using all three available AFOLU datasets employed for analysis in the IPCC AR5, rather than just one as done in the IPCC AR5 WGIII Summary for Policy Makers, our analyses point to a down‐revision of global AFOLU shares of total anthropogenic emissions, while providing important additional information on subsectoral trends. Our findings confirm that the share of AFOLU emissions to the anthropogenic total declined over time. They indicate a decadal average of 28.7 ± 1.5% in the 1990s and 23.6 ± 2.1% in the 2000s and an annual value of 21.2 ± 1.5% in 2010. The IPCC AR5 had indicated a 24% share in 2010. In contrast to previous decades, when emissions from land use (land use, land use change and forestry, including deforestation) were significantly larger than those from agriculture (crop and livestock production), in 2010 agriculture was the larger component, contributing 11.2 ± 0.4% of total GHG emissions, compared to 10.0 ± 1.2% of the land use sector. Deforestation was responsible for only 8% of total anthropogenic emissions in 2010, compared to 12% in the 1990s. Since 2010, the last year assessed by the IPCC AR5, new FAO estimates indicate that land use emissions have remained stable, at about 4.8 Gt CO2 eq yr?1 in 2012. Emissions minus removals have also remained stable, at 3.2 Gt CO2 eq yr?1 in 2012. By contrast, agriculture emissions have continued to grow, at roughly 1% annually, and remained larger than the land use sector, reaching 5.4 Gt CO2 eq yr?1 in 2012. These results are useful to further inform the current climate policy debate on land use, suggesting that more efforts and resources should be directed to further explore options for mitigation in agriculture, much in line with the large efforts devoted to REDD+ in the past decade.  相似文献   
48.

Background

Extracellular high mobility group box 1 (HMGB1) protein can operate in a synergistic fashion with different signal molecules promoting an increase of cell Ca2+ influx. However, the mechanisms responsible for this effect of HMGB1 are still unknown.

Principal Findings

Here we demonstrate that, at concentrations of agonist per se ineffective, HMGB1 potentiates the activation of the ionotropic glutamate N-methyl-D-aspartate receptor (NMDAR) in isolated hippocampal nerve terminals and in a neuroblastoma cell line. This effect was abolished by the NMDA channel blocker MK-801. The HMGB1-facilitated NMDAR opening was followed by activation of the Ca2+-dependent enzymes calpain and nitric oxide synthase in neuroblastoma cells, resulting in an increased production of NO, a consequent enhanced cell motility, and onset of morphological differentiation. We have also identified NMDAR as the mediator of HMGB1-stimulated murine erythroleukemia cell differentiation, induced by hexamethylenebisacetamide. The potentiation of NMDAR activation involved a peptide of HMGB1 located in the B box at the amino acids 130–139. This HMGB1 fragment did not overlap with binding sites for other cell surface receptors of HMGB1, such as the advanced glycation end products or the Toll-like receptor 4. Moreover, in a competition assay, the HMGB1(130–139) peptide displaced the NMDAR/HMGB1 interaction, suggesting that it comprised the molecular and functional site of HMGB1 regulating the NMDA receptor complex.

Conclusion

We propose that the multifunctional cytokine-like molecule HMGB1 released by activated, stressed, and damaged or necrotic cells can facilitate NMDAR-mediated cell responses, both in the central nervous system and in peripheral tissues, independently of other known cell surface receptors for HMGB1.  相似文献   
49.
The implantable enzyme amperometric biosensor continues as the dominant in vivo format for the detection, monitoring and reporting of biochemical analytes related to a wide range of pathologies. Widely used in animal studies, there is increasing emphasis on their use in diabetes care and management, the management of trauma-associated hemorrhage and in critical care monitoring by intensivists in the ICU. These frontier opportunities demand continuous indwelling performance for up to several years, well in excess of the currently approved seven days. This review outlines the many challenges to successful deployment of chronically implantable amperometric enzyme biosensors and emphasizes the emerging technological approaches in their continued development. The foreign body response plays a prominent role in implantable biotransducer failure. Topics considering the approaches to mitigate the inflammatory response, use of biomimetic chemistries, nanostructured topographies, drug eluting constructs, and tissue-to-device interface modulus matching are reviewed. Similarly, factors that influence biotransducer performance such as enzyme stability, substrate interference, mediator selection and calibration are reviewed. For the biosensor system, the opportunities and challenges of integration, guided by footprint requirements, the limitations of mixed signal electronics, and power requirements, has produced three systems approaches. The potential is great. However, integration along the multiple length scales needed to address fundamental issues and integration across the diverse disciplines needed to achieve success of these highly integrated systems, continues to be a challenge in the development and deployment of implantable amperometric enzyme biosensor systems.  相似文献   
50.
The innate immunity of Drosophila melanogaster is based on cellular and humoral components. Drosophila Helical factor (Hf), is a molecule previously discovered using an in silico approach and whose expression is controlled by the immune deficiency (Imd) pathway. Here we present evidence demonstrating that Hf is an inducible protein constitutively produced by the S2 hemocyte-derived cell line. Hf expression is stimulated by bacterial extracts that specifically trigger the Imd pathway. In absence of any bacterial challenge, the recombinant form of Hf can influence the expression of the antimicrobial peptides (AMPs) defensin but not drosomycin. These data suggest that in vitro Hf is an inducible and immune-regulated factor, with functions comparable to those of secreted vertebrate cytokines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号