首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2095篇
  免费   175篇
  2270篇
  2023年   2篇
  2022年   23篇
  2021年   32篇
  2020年   26篇
  2019年   27篇
  2018年   37篇
  2017年   29篇
  2016年   49篇
  2015年   110篇
  2014年   109篇
  2013年   133篇
  2012年   197篇
  2011年   155篇
  2010年   135篇
  2009年   124篇
  2008年   142篇
  2007年   156篇
  2006年   165篇
  2005年   123篇
  2004年   140篇
  2003年   116篇
  2002年   112篇
  2001年   16篇
  2000年   20篇
  1999年   16篇
  1998年   23篇
  1997年   14篇
  1996年   11篇
  1995年   6篇
  1994年   8篇
  1993年   6篇
  1992年   4篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1983年   1篇
排序方式: 共有2270条查询结果,搜索用时 0 毫秒
71.
A simple synthetic strategy is described to incorporate a protected diaminedithiol (N(2)S(2)) chelator during Fmoc solid-phase synthesis of short peptides. The resulting constructs could be efficiently labeled with technetium-99m (99mTc). The chelator was assembled at the N-terminus of peptides in a two-step procedure where the deprotected terminal amino group was first reacted with di-Fmoc-diaminopropionic acid (Fmoc-DAP-[Fmoc]-OH). The two protected amino groups were then simultaneously deprotected and subsequently reacted with S-benzoylthiolglycolic acid (TGA) to generate a protected N(2)S(2) chelator. This metal binding site was introduced into di- and tripeptides. Each peptide construct was composed of a C-terminal lysine residue and an N-terminal diaminopropionic moiety modified to create the chelator site. The epsilon-amino group at the C-terminal lysine was further derivatized with a nitroimidazole group to facilitate cellular retention. The resulting constructs were then cleaved from the resin support, purified, and labeled with [99mTc]pertechnetate. Six constructs were prepared differing by a single amino acid inserted between the diaminopropionic acid and lysine residues. Optimal labeling yields of >70% were achieved around neutral pH and heating at 75 degrees C for 10 min. Purified 99mTc-labeled constructs were found to accumulate in Chinese hamster ovary (CHO) cells in vitro as a function of charge and hydrophobicity.  相似文献   
72.
The partial sequence of the increasing capillary permeability protein (ICPP) purified from Vipera lebetina venom revealed a strong homology to vascular endothelial growth factor (VEGF)-A. We now report its complete amino acid sequence determined by Edman degradation and its biological effects on mouse and human vascular endothelial cells. ICPP is a homodimeric protein linked by cysteine disulfide bonds of 25115 Da revealed by mass spectrometry. Each monomer is composed of 110 amino acids including eight cysteine residues and a pyroglutamic acid at the N-terminal extremity. ICPP shares 52% sequence identity with human VEGF but lacks the heparin binding domain and Asn glycosylation site. Besides its strong capillary permeability activity, ICPP was found to be a potent in vitro angiogenic factor when added to mouse embryonic stem cells or human umbilical vein endothelial cells. ICPP was found to be as potent as human VEGF165 in activating p42/p44 MAPK, in reinitiation of DNA synthesis in human umbilical vein endothelial cells, and in promoting in vitro angiogenesis of mouse embryonic stem cells. All these biological actions, including capillary permeability in mice, were fully inhibited by 1 microm of a new specific VEGF receptor tyrosine kinase inhibitor (ZM317450) from AstraZeneca that belongs to the anilinocinnoline family of compounds. Indeed, up to a 30 times higher concentration of inhibitor did not affect platelet-derived growth factor, epidermal growth factor, FGF-2, insulin, alpha-thrombin, or fetal calf serum-induced p42/p44 MAPK and reinitiation of DNA synthesis. Therefore, we conclude that this venom-derived ICPP exerts its biological action (permeability and angiogenesis) through activation of VEGF receptor signaling (VEGF-R2 and possibly VEGF-R1).  相似文献   
73.
We show here that the pvr2 locus in pepper, conferring recessive resistance against strains of potato virus Y (PVY), corresponds to a eukaryotic initiation factor 4E (eIF4E) gene. RFLP analysis on the PVY-susceptible and resistant pepper cultivars, using an eIF4E cDNA from tobacco as probe, revealed perfect map co-segregation between a polymorphism in the eIF4E gene and the pvr2 alleles, pvr2(1) (resistant to PVY-0) and pvr2(2) (resistant to PVY-0 and 1). The cloned pepper eIF4E cDNA encoded a 228 amino acid polypeptide with 70-86% nucleotide sequence identity with other plant eIF4Es. The sequences of eIF4E protein from two PVY-susceptible cultivars were identical and differed from the eIF4E sequences of the two PVY-resistant cultivars Yolo Y (YY) (pvr2(1)) and FloridaVR2 (F) (pvr2(2)) at two amino acids, a mutation common to both resistant genotypes and a second mutation specific to each. Complementation experiments were used to show that the eIF4E gene corresponds to pvr2. Thus, potato virus X-mediated transient expression of eIF4E from susceptible cultivar Yolo Wonder (YW) in the resistant genotype YY resulted in loss of resistance to subsequent PVY-0 inoculation and transient expression of eIF4E from YY (resistant to PVY-0; susceptible to PVY-1) rendered genotype F susceptible to PVY-1. Several lines of evidence indicate that interaction between the potyvirus genome-linked protein (VPg) and eIF4E are important for virus infectivity, suggesting that the recessive resistance could be due to incompatibility between the VPg and eIF4E in the resistant genotype.  相似文献   
74.
We observed that in vivo and in vitro a small fraction of the glycolytic enzyme enolase became covalently modified by its substrate 2-phosphoglycerate (2-PG). In modified Escherichia coli enolase, 2-PG was bound to Lys341, which is located in the active site. An identical reversible modification was observed with other bacterial enolases, but also with enolase from Saccharomyces cerevisiae and rabbit muscle. An equivalent of Lys341, which plays an important role in catalysis, is present in enolase of all organisms. Covalent binding of 2-PG to this amino acid rendered the enzyme inactive. Replacement of Lys341 of E.coli enolase with other amino acids prevented the automodification and in most cases strongly reduced the activity. As reported for other bacteria, a significant fraction of E.coli enolase was found to be exported into the medium. Interestingly, all Lys341 substitutions prevented not only the automodification, but also the export of enolase. The K341E mutant enolase was almost as active as the wild-type enzyme and therefore allowed us to establish that the loss of enolase export correlates with the loss of modification and not the loss of glycolytic activity.  相似文献   
75.
NMR spectroscopy has evolved dramatically over the past 15 years, establishing a new, reliable methodology for studying biomacromolecules at atomic resolution. The three-dimensional structure and dynamics of a biomolecule or a biomolecular complex is only one of the main types of information available using NMR. The spectral assignment to the specific nuclei of a biostructure is a very precise reflection of their electronic environment. Any change in this environment due to a structural change, the binding of a ligand or the redox state of a redox cofactor, will be very sensitively reported by changes in the different NMR parameters. The capabilities of the NMR method are currently expanding dramatically and it is turning into a powerful means to study biosystems dynamically in exchange between different conformations, exchanging ligands, transient complexes, or the activation/inhibition of regulated enzymes. We review here several NMR studies that have appeared during the past 5 or 6 years in the field of redox proteins of plants, yeasts and photosynthetic bacteria. These new results illustrate the recent biomolecular NMR evolution and provide new physiological models for understanding the different types of electron transfer, including glutaredoxins, thioredoxins and their dependent enzymes, the ferredoxin-NADP oxidoreductase complex, flavodoxins, the plastocyanin-cytochrome f complex, and cytochromes c.  相似文献   
76.
Olry A  Boschi-Muller S  Branlant G 《Biochemistry》2004,43(36):11616-11622
Methionine sulfoxide reductases catalyze the thioredoxin-dependent reduction of methionine sulfoxide back to methionine. The methionine sulfoxide reductases family is composed of two structurally unrelated classes of enzymes named MsrA and MsrB, which display opposite stereoselectivities toward the sulfoxide function. Both enzymes are monomeric and share a similar three-step chemical mechanism. First, in the reductase step, a sulfenic acid intermediate is formed with a concomitant release of 1 mol of methionine per mol of enzyme. Then, an intradisulfide bond is formed. Finally, Msrs return back to reduced forms via reduction by thioredoxin. In the present study, it is shown for the Neisseria meningitidis MsrB that (1) the reductase step is rate-determining in the process leading to formation of the disulfide bond and (2) the thioredoxin-recycling process is rate-limiting. Moreover, the data suggest that within the thioredoxin-recycling process, the rate-limiting step takes place after the two-electron chemical exchange and thus is associated with the release of oxidized thioredoxin.  相似文献   
77.
ΔN123-glucan-binding domain-catalytic domain 2 (ΔN123-GBD-CD2) is a truncated form of the bifunctional glucansucrase DSR-E from Leuconostoc mesenteroides NRRL B-1299. It was constructed by rational truncation of GBD-CD2, which harbors the second catalytic domain of DSR-E. Like GBD-CD2, this variant displays α-(1→2) branching activity when incubated with sucrose as glucosyl donor and (oligo-)dextran as acceptor, transferring glucosyl residues to the acceptor via a ping-pong bi-bi mechanism. This allows the formation of prebiotic molecules containing controlled amounts of α-(1→2) linkages. The crystal structure of the apo α-(1→2) branching sucrase ΔN123-GBD-CD2 was solved at 1.90 Å resolution. The protein adopts the unusual U-shape fold organized in five distinct domains, also found in GTF180-ΔN and GTF-SI glucansucrases of glycoside hydrolase family 70. Residues forming subsite −1, involved in binding the glucosyl residue of sucrose and catalysis, are strictly conserved in both GTF180-ΔN and ΔN123-GBD-CD2. Subsite +1 analysis revealed three residues (Ala-2249, Gly-2250, and Phe-2214) that are specific to ΔN123-GBD-CD2. Mutation of these residues to the corresponding residues found in GTF180-ΔN showed that Ala-2249 and Gly-2250 are not directly involved in substrate binding and regiospecificity. In contrast, mutant F2214N had lost its ability to branch dextran, although it was still active on sucrose alone. Furthermore, three loops belonging to domains A and B at the upper part of the catalytic gorge are also specific to ΔN123-GBD-CD2. These distinguishing features are also proposed to be involved in the correct positioning of dextran acceptor molecules allowing the formation of α-(1→2) branches.  相似文献   
78.
79.
Moyamoya is a cerebrovascular condition characterized by a progressive stenosis of the terminal part of the internal carotid arteries (ICAs) and the compensatory development of abnormal “moyamoya” vessels. The pathophysiological mechanisms of this condition, which leads to ischemic and hemorrhagic stroke, remain unknown. It can occur as an isolated cerebral angiopathy (so-called moyamoya disease) or in association with various conditions (moyamoya syndromes). Here, we describe an autosomal-recessive disease leading to severe moyamoya and early-onset achalasia in three unrelated families. This syndrome is associated in all three families with homozygous mutations in GUCY1A3, which encodes the α1 subunit of soluble guanylate cyclase (sGC), the major receptor for nitric oxide (NO). Platelet analysis showed a complete loss of the soluble α1β1 guanylate cyclase and showed an unexpected stimulatory role of sGC within platelets. The NO-sGC-cGMP pathway is a major pathway controlling vascular smooth-muscle relaxation, vascular tone, and vascular remodeling. Our data suggest that alterations of this pathway might lead to an abnormal vascular-remodeling process in sensitive vascular areas such as ICA bifurcations. These data provide treatment options for affected individuals and strongly suggest that investigation of GUCY1A3 and other members of the NO-sGC-cGMP pathway is warranted in both isolated early-onset achalasia and nonsyndromic moyamoya.  相似文献   
80.
Individuals differ in personality and immediate behavioural plasticity. While developmental environment may explain this group diversity, the effect of parental environment is still unexplored—a surprising observation since parental environment influences mean behaviour. We tested whether developmental and parental environments impacted personality and immediate plasticity. We raised two generations of Physa acuta snails in the laboratory with or without developmental exposure to predator cues. Escape behaviour was repeatedly assessed on adult snails with or without predator cues in the immediate environment. On average, snails were slower to escape if they or their parents had been exposed to predator cues during development. Snails were also less plastic in response to immediate predation risk on average if they or their parents had been exposed to predator cues. Group diversity in personality was greater in predator-exposed snails than unexposed snails, while parental environment did not influence it. Group diversity in immediate plasticity was not significant. Our results suggest that only developmental environment plays a key role in the emergence of group diversity in personality, but that parental environment influences mean behavioural responses to the environmental change. Consequently, although different, both developmental and parental cues may have evolutionary implications on behavioural responses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号