首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2223篇
  免费   192篇
  2022年   27篇
  2021年   34篇
  2020年   28篇
  2019年   29篇
  2018年   41篇
  2017年   33篇
  2016年   53篇
  2015年   110篇
  2014年   111篇
  2013年   133篇
  2012年   206篇
  2011年   163篇
  2010年   138篇
  2009年   130篇
  2008年   145篇
  2007年   164篇
  2006年   174篇
  2005年   128篇
  2004年   144篇
  2003年   121篇
  2002年   115篇
  2001年   18篇
  2000年   19篇
  1999年   19篇
  1998年   24篇
  1997年   15篇
  1996年   12篇
  1995年   6篇
  1994年   10篇
  1993年   7篇
  1992年   10篇
  1991年   7篇
  1990年   3篇
  1989年   2篇
  1987年   2篇
  1985年   3篇
  1984年   3篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1970年   1篇
  1969年   1篇
  1965年   2篇
  1959年   1篇
  1956年   1篇
  1951年   1篇
  1925年   1篇
  1924年   2篇
  1923年   1篇
排序方式: 共有2415条查询结果,搜索用时 93 毫秒
91.
Receptor tyrosine kinase regulation of phospholipase C-epsilon (PLC-epsilon), which is under the control of Ras-like and Rho GTPases, was studied with HEK-293 cells endogenously expressing PLC-coupled epidermal growth factor (EGF) receptors. PLC and Ca(2+) signaling by the EGF receptor, which activated both PLC-gamma1 and PLC-epsilon, was specifically suppressed by inactivation of Ras-related GTPases with clostridial toxins and expression of dominant-negative Rap2B. EGF induced rapid and sustained GTP loading of Rap2B, binding of Rap2B to PLC-epsilon, and Rap2B-dependent translocation of PLC-epsilon to the plasma membrane. GTP loading of Rap2B by EGF was inhibited by chelation of intracellular Ca(2+) and expression of lipase-inactive PLC-gamma1 but not of PLC-epsilon. Expression of RasGRP3, a Ca(2+)/diacylglycerol-regulated guanine nucleotide exchange factor for Ras-like GTPases, but not expression of various other exchange factors enhanced GTP loading of Rap2B and PLC/Ca(2+) signaling by the EGF receptor. EGF induced tyrosine phosphorylation of RasGRP3, but not RasGRP1, apparently caused by c-Src; inhibition of c-Src interfered with EGF-induced Rap2B activation and PLC stimulation. Collectively, these data suggest that the EGF receptor triggers activation of Rap2B via PLC-gamma1 activation and tyrosine phosphorylation of RasGRP3 by c-Src, finally resulting in stimulation of PLC-epsilon.  相似文献   
92.
Cytoskeleton damage, particularly microtubule (MT) alterations, may play an important role in the pathogenesis of ischemia-induced myocardial injury. However, this disorganization has been scarcely confirmed in the cellular context. We evaluated MT network disassembly in myoblast cell line H9c2 and in neonatal rat cardiomyocytes in an in vitro substrate-free hypoxia model of simulated ischemia (SI). After different duration of SI from 30 up to 180 min, the cells were fixed and the microtubule network was revealed by immunocytochemistry. The microtubule alterations were quantified using a house-developed image analysis program. Additionally, the tubulin fraction were extracted and quantified by Western blotting. The cell respiration, the release of cellular LDH and the cell viability were evaluated at the same periods. An early MT disassembly was observed after 60 min of SI. The decrease in MT fluorescence intensity at 60 and 90 min was correlated with a microtubule disassembly. Conversely, SI-induced significant LDH release (35%) and decrease in cell viability (34%) occurred after 120 min only. These results suggest that the simulated ischemia-induced changes in MT network should not be considered as an ultrastructural hallmark of the cell injury and could rather be an early ultrastructural correlate of the cellular reaction to the metabolic challenge.  相似文献   
93.
Pseudomonas brassicacearum was isolated as a major root-colonizing population from Arabidopsis thaliana. The strain NFM421 of P. brassicacearum undergoes phenotypic variation during A. thaliana and Brassica napus root colonization in vitro as well as in soil, resulting in different colony appearance on agar surfaces. Bacteria forming translucent colonies (phase II cells) essentially were localized at the surface of young roots and root tips, whereas wild-type cells (phase I cells) were localized at the basal part of roots. The ability of phase II cells to spread and colonize new sites on root surface correlates with over-production of flagellin as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of surface proteins and microsequencing. Moreover, phase II cells showed a higher ability to swim and to swarm on semisolid agar medium. Phase I and phase II cells of P. brassicacearum NFM421 were tagged genetically with green fluorescent protein and red fluorescent protein. Confocal scanning laser microscopy was used to localize phase II cells on secondary roots and root tips of A. thaliana, whereas phase I cells essentially were localized at the basal part of roots. These experiments were conducted in vitro and in soil. Phenotypic variation on plant roots is likely to be a colonization strategy that may explain the high colonization power of P. brassicacearum.  相似文献   
94.
95.
96.
97.
Recent studies demonstrated that deglycosylation step is a prerequisite for endoplasmic reticulum (ER)-associated degradation of misfolded glycoproteins. Here, we report the advantages of using benzyl mannose during pulse-chase experiments to study the subcellular location of the deglycosylation step in Chinese hamster ovary (CHO) cell lines. Benzyl mannose inhibited both the ER-to-cytosol transport of oligomannosides and the trimming of cytosolic-labeled oligomannosides by the cytosolic mannosidase in vivo. We pointed out the occurrence of two subcellular sites of deglycosylation. The first one is located in the ER lumen, and led to the formation of Man8GlcNAc2 (isomer B) in wild-type CHO cell line and Man4GlcNAc2 in Man-P-Dol-deficient cell line. The second one was revealed in CHO mutant cell lines for which a high rate of glycoprotein degradation was required. It occurred in the cytosol and led to the liberation of oligosaccharides species with one GlcNAc residue and with a pattern similar to the one bound onto glycoproteins. The cytosolic deglycosylation site was not specific for CHO mutant cell lines, since we demonstrated the occurrence of cytosolic pathway when the formation of truncated glycans was induced in wild-type cells.  相似文献   
98.
The aim of this study was to assess the frequency of mustelid herpesvirus-1 (MusHV-1) infection in free-ranging badgers (Meles meles) in the British Isles. A polymerase chain reaction assay was developed that detected MusHV-1 DNA in 95% (18/19) and 100% (10/10) of anticoagulant-treated blood samples collected from free-ranging badgers sampled in the southwest of England and the Republic of Ireland, respectively. An indirect immunoassay was also developed to detect MusHV-1-specific immunoglobulin-G in serum samples. Using an arbitrary cutoff of twice the optical density obtained with a virus-negative preparation, 32.7% (36/110) of sera sampled from badgers were positive. The conclusion drawn from these data is that infection with MusHV-1 is common among free-ranging badgers in the British Isles.  相似文献   
99.
NMR spectroscopy has evolved dramatically over the past 15 years, establishing a new, reliable methodology for studying biomacromolecules at atomic resolution. The three-dimensional structure and dynamics of a biomolecule or a biomolecular complex is only one of the main types of information available using NMR. The spectral assignment to the specific nuclei of a biostructure is a very precise reflection of their electronic environment. Any change in this environment due to a structural change, the binding of a ligand or the redox state of a redox cofactor, will be very sensitively reported by changes in the different NMR parameters. The capabilities of the NMR method are currently expanding dramatically and it is turning into a powerful means to study biosystems dynamically in exchange between different conformations, exchanging ligands, transient complexes, or the activation/inhibition of regulated enzymes. We review here several NMR studies that have appeared during the past 5 or 6 years in the field of redox proteins of plants, yeasts and photosynthetic bacteria. These new results illustrate the recent biomolecular NMR evolution and provide new physiological models for understanding the different types of electron transfer, including glutaredoxins, thioredoxins and their dependent enzymes, the ferredoxin-NADP oxidoreductase complex, flavodoxins, the plastocyanin-cytochrome f complex, and cytochromes c.  相似文献   
100.
IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology   总被引:15,自引:0,他引:15  
All osteogenic cells (osteoclasts, osteoblasts) contribute individually to bone remodeling. Their cellular interactions control their cellular activities and the bone remodeling intensity. These interactions can be established either through a cell-cell contact, involving molecules of the integrin family, or by the release of many polypeptidic factors and/or their soluble receptor chains. These factors can act directly on osteogenic cells and their precursors to control differentiation, formation and functions (matrix formation, mineralization, resorption...). Here, we present the involvement of three groups of cytokines which seem to be of particular importance in bone physiology: interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha) (TNF-alpha)/IL-1, and the more recently known triad osteoprotegerin (OPG)/receptor activator of NF-kappaB (RANK)/RANK ligand (RANKL). The interactions between these three groups are presented within the framework of bone resorption pathophysiology such as tumor associated osteolysis. The central role of the OPG/RANK/RANKL triad is pointed out.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号