首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9765篇
  免费   840篇
  国内免费   12篇
  2023年   37篇
  2022年   130篇
  2021年   205篇
  2020年   113篇
  2019年   152篇
  2018年   203篇
  2017年   201篇
  2016年   286篇
  2015年   488篇
  2014年   519篇
  2013年   692篇
  2012年   834篇
  2011年   808篇
  2010年   520篇
  2009年   444篇
  2008年   683篇
  2007年   621篇
  2006年   578篇
  2005年   560篇
  2004年   494篇
  2003年   454篇
  2002年   441篇
  2001年   105篇
  2000年   63篇
  1999年   94篇
  1998年   114篇
  1997年   72篇
  1996年   57篇
  1995年   35篇
  1994年   52篇
  1993年   40篇
  1992年   30篇
  1991年   32篇
  1990年   37篇
  1989年   27篇
  1988年   27篇
  1987年   28篇
  1986年   29篇
  1985年   21篇
  1984年   29篇
  1983年   15篇
  1982年   30篇
  1981年   26篇
  1980年   25篇
  1979年   27篇
  1978年   19篇
  1977年   16篇
  1975年   13篇
  1974年   21篇
  1972年   17篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
Human mesenchymal stem cells (hMSC) derived from bone marrow aspirates can form the basis for the in vitro cultivation of autologous tissue grafts and help alleviate the problems of immunorejection and disease transmission associated with the use of allografts. We explored the utility of hMSC cultured on protein scaffolds for tissue engineering of cartilage. hMSC were isolated, expanded in culture, characterized with respect to the expression of surface markers and ability for chondrogenic and osteogenic differentiation, and seeded on scaffolds. Four different scaffolds were tested, formed as a highly porous sponge made of: 1) collagen, 2) cross-linked collagen, 3) silk, and 4) RGD-coupled silk. Cell-seeded scaffolds were cultured for up to 4 weeks in either control medium (DMEM supplemented with 10% fetal bovine serum) or chondrogenic medium (control medium supplemented with chondrogenic factors). hMSC attachment, proliferation, and metabolic activity were markedly better on slowly degrading silk than on fast-degrading collagen scaffolds. In chondrogenic medium, hMSC formed cartilaginous tissues on all scaffolds, but the extent of chondrogenesis was substantially higher for hMSC cultured on silk as compared to collagen scaffolds. The deposition of glycosaminoglycan (GAG) and type II collagen and the expression of type II collagen mRNA were all higher for hMSC cultured on silk than on collagen scaffolds. Taken together, these results suggest that silk scaffolds are particularly suitable for tissue engineering of cartilage starting from hMSC, presumably due to their high porosity, slow biodegradation, and structural integrity.  相似文献   
993.
Ycf53 is a hypothetical chloroplast open reading frame with similarity to the Arabidopsis nuclear gene GUN4. In plants, GUN4 is involved in tetrapyrrole biosynthesis. We demonstrate that one of the two Synechocystis sp. PCC 6803 ycf53 genes with similarity to GUN4 functions in chlorophyll (Chl) biosynthesis as well: cyanobacterial gun4 mutant cells exhibit lower Chl contents, accumulate protoporphyrin IX and show less activity not only of Mg chelatase but also of Fe chelatase. The possible role of Gun4 for the Mg as well as Fe porphyrin biosynthesis branches in Synechocystis sp. PCC 6803 is discussed.  相似文献   
994.
995.
The prion protein (PrP) is the major agent implicated in the diseases known as transmissible spongiform encephalopathies. The onset of transmissible spongiform encephalopathy is related to a change in conformation of the PrP(C), which loses most of its alpha-helical content, becoming a beta-sheet-rich protein, known as PrP(Sc). Here we have used two Syrian hamster prion domains (PrP 109-141 and PrP 109-149) and the murine recombinant PrP (rPrP 23-231) to investigate the effects of anilino-naphtalene compounds on prion oligomerization and aggregation. Aggregation in the presence of bis-ANS (4,4'-dianilino-1,1'-binaphthyl-5,5'-sulfonate), ANS (1-anilinonaphthalene-8-sulfonate), and AmNS (1-amino-5-naphtalenesulfonate) was monitored. Bis-ANS was the most effective inhibitor of prion peptide aggregation. Bis-ANS binds strongly to rPrP 23-231 leading to a substantial increase in beta-sheet content and to limited oligomerization. More strikingly, the binding of bis-ANS to full-length rPrP is diminished by the addition of nanomolar concentrations of oligonucleotides, demonstrating that they compete for the same binding site. Thus, bis-ANS displays properties similar to those of nucleic acids, causing oligomerization and conversion to beta-sheet (Cordeiro, Y., Machado, F., Juliano, L., Juliano, M. A., Brentani, R. R., Foguel, D., and Silva, J. L. (2001) J. Biol. Chem. 276, 49400-49409). This dual effect of bis-ANS on prion protein makes this compound highly important to sequester crucial conformations of the protein, which may be useful to the understanding of the disease and to serve as a lead for the development of new therapeutic strategies.  相似文献   
996.
The overabundance of dietary fats and simple carbohydrates contributes significantly to obesity and metabolic disorders associated with obesity. The liver balances glucose and lipid distribution, and disruption of this balance plays a key role in these metabolic syndromes. We investigated (1) how hepatocytes balance glucose and fatty acid metabolism when one or both nutrients are supplied in abundance and (2) whether rat hepatoma cells (McA-RH7777) reflect nutrient partitioning in a similar manner as compared with primary hepatocytes. Increasing media palmitate concentration increased fatty acid uptake, triglyceride synthesis and beta-oxidation. However, hepatoma cells had a 2-fold higher fatty acid uptake and a 2-fold lower fatty acid oxidation as compared with primary hepatocytes. McA-RH7777 cells did not synthesize significant amounts of glycogen and preferentially metabolized the glucose into lipids or into oxidation. In primary hepatocytes, the glucose was mostly spared from oxidation and instead partitioned into both de novo glycogen and lipid synthesis. Overall, lipid production was rapidly induced in response to either glucose or fatty acid excess and this may be one of the earliest indicators of metabolic syndrome development associated with nutrient excess.  相似文献   
997.
998.
Lynch SM  Boswell SA  Colón W 《Biochemistry》2004,43(51):16525-16531
Over 100 mutants of the enzyme Cu/Zn superoxide dismutase (SOD) have been implicated in the neurodegenerative disease familial amyotrophic lateral sclerosis (FALS). Growing evidence suggests that the aggregation of SOD mutants may play a causative role in FALS and that aberrant copper chemistry, decreased thermodynamic stability, and decreased affinity for metals may contribute independently or synergistically to this process. Since the loss of the copper and zinc ions significantly decreases the thermodynamic stability of SOD, it is expected that this would also decrease its kinetic stability, thereby facilitating partial or global unfolding transitions that may lead to misfolding and aggregation. Here we used wild-type (WT) SOD and five FALS-related mutants (G37R, H46R, G85R, D90A, and L144F) to show that the metals contribute significantly to the kinetic stability of the protein, with demetalated (apo) SOD showing acid-induced unfolding rates about 60-fold greater than the metalated (holo) protein. However, the unfolding rates of SOD WT and mutants were similar to each other in both the holo and apo states, indicating that regardless of the effect of mutation on thermodynamic stability, the kinetic barrier toward SOD unfolding is dependent on the presence of metals. Thus, these results suggest that pathogenic SOD mutations that do not significantly alter the stability of the protein may still lead to SOD aggregation by compromising its ability to bind or retain its metals and thereby decrease its kinetic stability. Furthermore, the mutant-like decrease in the kinetic stability of apo WT SOD raises the possibility that the loss of metals in WT SOD may be involved in nonfamilial forms of ALS.  相似文献   
999.
A recently published procedure to enrich for efficient competitive root tip colonizers (I. Kuiper, G. V. Bloemberg, and B. J. J. Lugtenberg, Mol. Plant-Microbe Interact. 14:1197-1205) after bacterization of seeds was applied to isolate efficient competitive root tip colonizers for both the dicotyledenous plant tomato and the monocotyledenous plant grass from a random Tn5luxAB mutant bank of the good root colonizer Pseudomonas fluorescens WCS365. Unexpectedly, the best-colonizing mutant, strain PCL1286, showed a strongly enhanced competitive root-tip-colonizing phenotype. Sequence analyses of the Tn5luxAB flanking regions showed that the transposon had inserted in a mutY homolog. This gene is involved in the repair of A. G mismatches caused by spontaneous oxidation of guanine. We hypothesized that, since the mutant is defective in repairing its mismatches, its cells harbor an increased number of mutations and therefore can adapt faster to the environment of the root system. To test this hypothesis, we constructed another mutY mutant and analyzed its competitive root tip colonization behavior prior to and after enrichment. As a control, a nonmutated wild type was subjected to the enrichment procedure. The results of these analyses showed (i) that the enrichment procedure did not alter the colonization ability of the wild type, (ii) that the new mutY mutant was strongly impaired in its colonization ability, but (iii) that after three enrichment cycles it colonized significantly better than its wild type. Therefore it is concluded that both the mutY mutation and the selection procedure are required to obtain an enhanced root-tip-colonizing mutant.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号