首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9547篇
  免费   839篇
  国内免费   12篇
  10398篇
  2023年   43篇
  2022年   119篇
  2021年   201篇
  2020年   108篇
  2019年   141篇
  2018年   188篇
  2017年   190篇
  2016年   274篇
  2015年   466篇
  2014年   511篇
  2013年   665篇
  2012年   807篇
  2011年   781篇
  2010年   508篇
  2009年   431篇
  2008年   653篇
  2007年   604篇
  2006年   567篇
  2005年   540篇
  2004年   492篇
  2003年   444篇
  2002年   438篇
  2001年   102篇
  2000年   58篇
  1999年   85篇
  1998年   113篇
  1997年   69篇
  1996年   56篇
  1995年   37篇
  1994年   52篇
  1993年   43篇
  1992年   32篇
  1991年   33篇
  1990年   40篇
  1989年   31篇
  1988年   30篇
  1987年   32篇
  1986年   28篇
  1985年   20篇
  1984年   29篇
  1983年   15篇
  1982年   32篇
  1981年   26篇
  1980年   28篇
  1979年   27篇
  1978年   18篇
  1977年   21篇
  1974年   30篇
  1972年   19篇
  1971年   13篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
151.
152.
Class IB phosphoinositide 3-kinase γ (PI3Kγ) comprises a single catalytic p110γ subunit, which binds to two non-catalytic subunits, p87 or p101, and controls a plethora of fundamental cellular responses. The non-catalytic subunits are assumed to be redundant adaptors for Gβγ enabling G-protein-coupled receptor-mediated regulation of PI3Kγ. Growing experimental data provide contradictory evidence. To elucidate the roles of the non-catalytic subunits in determining the specificity of PI3Kγ, we tested the impact of p87 and p101 in heterodimeric p87-p110γ and p101-p110γ complexes on the modulation of PI3Kγ activity in vitro and in living cells. RT-PCR, biochemical, and imaging data provide four lines of evidence: (i) specific expression patterns of p87 and p101, (ii) up-regulation of p101, providing the basis to consider p87 as a protein forming a constitutively and p101 as a protein forming an inducibly expressed PI3Kγ, (iii) differences in basal and stimulated enzymatic activities, and (iv) differences in complex stability, all indicating apparent diversity within class IB PI3Kγ. In conclusion, expression and activities of PI3Kγ are modified differently by p87 and p101 in vitro and in living cells, arguing for specific regulatory roles of the non-catalytic subunits in the differentiation of PI3Kγ signaling pathways.  相似文献   
153.
Release of Ca2+ from the sarcoplasmic reticulum (SR) drives contractile function of cardiac myocytes. Luminal Ca2+ regulation of SR Ca2+ release is fundamental not only in physiology but also in physiopathology because abnormal luminal Ca2+ regulation is known to lead to arrhythmias, catecholaminergic polymorphic ventricular tachycardia (CPVT), and/or sudden cardiac arrest, as inferred from animal model studies. Luminal Ca2+ regulates ryanodine receptor (RyR)2-mediated SR Ca2+ release through mechanisms localized inside the SR; one of these involves luminal Ca2+ interacting with calsequestrin (CASQ), triadin, and/or junctin to regulate RyR2 function.CASQ2-RyR2 regulation was examined at the single RyR2 channel level. Single RyR2s were incorporated into planar lipid bilayers by the fusion of native SR vesicles isolated from either wild-type (WT), CASQ2 knockout (KO), or R33Q-CASQ2 knock-in (KI) mice. KO and KI mice have CPVT-like phenotypes. We show that CASQ2(WT) action on RyR2 function (either activation or inhibition) was strongly influenced by the presence of cytosolic MgATP. Function of the reconstituted CASQ2(WT)–RyR2 complex was unaffected by changes in luminal free [Ca2+] (from 0.1 to 1 mM). The inhibition exerted by CASQ2(WT) association with the RyR2 determined a reduction in cytosolic Ca2+ activation sensitivity. RyR2s from KO mice were significantly more sensitive to cytosolic Ca2+ activation and had significantly longer mean open times than RyR2s from WT mice. Sensitivity of RyR2s from KI mice was in between that of RyR2 channels from KO and WT mice. Enhanced cytosolic RyR2 Ca2+ sensitivity and longer RyR2 open times likely explain the CPVT-like phenotype of both KO and KI mice.  相似文献   
154.
155.
Staphylococcal contamination of food products and staphylococcal food-borne illnesses continue to be a problem worldwide. Screening of food for the presence of Staphylococcus aureus and/or enterotoxins using traditional methods is laborious. Reliable and rapid multiplex detection methods from a single food extract or culture supernatant would simplify testing. A fluorescence-based cytometric bead array was developed for the detection of staphylococcal enterotoxin B (SEB), using magnetic microspheres coupled with either an engineered, enterotoxin-specific Vβ domain of the T-cell receptor (Vβ-TCR) or polyclonal antibodies. The binding affinity of the Vβ-TCR for SEB has been shown to be in the picomolar range, comparable to the best monoclonal antibodies. The coupled beads were validated with purified enterotoxins and tested in a variety of food matrices spiked with enterotoxins. The Vβ-TCR or antibody was shown to specifically bind SEB in four different food matrices, including milk, mashed potatoes, vanilla pudding, and cooked chicken. The use of traditional polyclonal antibodies and Vβ-TCR provides a redundant system that ensures accurate identification of the enterotoxin, and the use of labeled microspheres permits simultaneous testing of multiple enterotoxins from a single sample.  相似文献   
156.
Sphingomonads comprise a physiologically versatile group within the Alphaproteobacteria that includes strains of interest for biotechnology, human health, and environmental nutrient cycling. In this study, we compared 26 sphingomonad genome sequences to gain insight into their ecology, metabolic versatility, and environmental adaptations. Our multilocus phylogenetic and average amino acid identity (AAI) analyses confirm that Sphingomonas, Sphingobium, Sphingopyxis, and Novosphingobium are well-resolved monophyletic groups with the exception of Sphingomonas sp. strain SKA58, which we propose belongs to the genus Sphingobium. Our pan-genomic analysis of sphingomonads reveals numerous species-specific open reading frames (ORFs) but few signatures of genus-specific cores. The organization and coding potential of the sphingomonad genomes appear to be highly variable, and plasmid-mediated gene transfer and chromosome-plasmid recombination, together with prophage- and transposon-mediated rearrangements, appear to play prominent roles in the genome evolution of this group. We find that many of the sphingomonad genomes encode numerous oxygenases and glycoside hydrolases, which are likely responsible for their ability to degrade various recalcitrant aromatic compounds and polysaccharides, respectively. Many of these enzymes are encoded on megaplasmids, suggesting that they may be readily transferred between species. We also identified enzymes putatively used for the catabolism of sulfonate and nitroaromatic compounds in many of the genomes, suggesting that plant-based compounds or chemical contaminants may be sources of nitrogen and sulfur. Many of these sphingomonads appear to be adapted to oligotrophic environments, but several contain genomic features indicative of host associations. Our work provides a basis for understanding the ecological strategies employed by sphingomonads and their role in environmental nutrient cycling.  相似文献   
157.
Purple urine bag syndrome (PUBS) is an uncommon but particularly striking phenomenon characterised by a chemical reaction involving the urine, plastic and certain enzymes from some sulphatase- and phosphatase-producing bacteria, including Proteus mirabilis, Escherichia coli and Morganella morganii, amongst others. Following this reaction, the catheter and the bag may be stained red, blue or purple. This phenomenon tends to occur in patients with multiple pathology and with urinary catheters, as part of a urinary tract infection. We describe two clinical cases of PUBS in institutionalised patients with permanent urinary catheters.  相似文献   
158.
A protocol for the efficient isotopic labeling of large G protein‐coupled receptors with tryptophan in Escherichia coli as expression host was developed that sufficiently suppressed the naturally occurring L‐tryptophan indole lyase, which cleaves tryptophan into indole, pyruvate, and ammonia resulting in scrambling of the isotopic label in the protein. Indole produced by the tryptophanase is naturally used as messenger for cell–cell communication. Detailed analysis of different process conducts led to the optimal expression strategy, which mimicked cell–cell communication by the addition of indole during expression. Discrete concentrations of indole and 15N2‐L‐tryptophan at dedicated time points in the fermentation drastically increased the isotopic labeling efficiency. Isotope scrambling was only observed in glutamine, asparagine, and arginine side chains but not in the backbone. This strategy allows producing specifically tryptophan labeled membrane proteins at high concentrations avoiding the disadvantages of the often low yields of auxotrophic E. coli strains. In the fermentation process carried out according to this protocol, we produced ~15 mg of tryptophan labeled neuropeptide Y receptor type 2 per liter medium. Biotechnol. Bioeng. 2013; 110: 1681–1690. © 2013 Wiley Periodicals, Inc.  相似文献   
159.
Separation of distinct body, organ and tissue compartments, and maintenance of epithelial cell polarity require tight junctions (TJ)--cell-cell junctions located in the apicolateral regions of epithelial and endothelial cells. Studies on the protein components of vertebrate TJ have revealed an intricate network of membrane, sub-membrane, cytoskeletal, and signalling molecules. How these molecules functionally interact to provide TJ with their functions, and what roles these molecules play in control of cell growth and differentiation is a fundamental problem in cell biology.  相似文献   
160.
Cellular protein synthesis is initiated with methionine in eukaryotes with few exceptions. Methionine aminopeptidases (MetAPs) which catalyze the process of N-terminal methionine excision are essential for all organisms. In mammals, type 2 MetAP (MetAP2) is known to be important for angiogenesis, while type 1 MetAP (MetAP1) has been shown to play a pivotal role in cell proliferation. Our previous high-throughput screening of a commercial compound library uncovered a novel class of inhibitors for both human MetAP1 (HsMetAP1) and human MetAP2 (HsMetAP2). This class of inhibitors contains a pyridinylpyrimidine core. To understand the structure–activity relationship (SAR) and to search for analogues of 2 with greater potency and higher HsMetAP1-selectivity, a total of 58 analogues were acquired through either commercial source or by in-house synthesis and their inhibitory activities against HsMetAP1 and HsMetAP2 were determined. Through this systematic medicinal chemistry analysis, we have identified (1) 5-chloro-6-methyl-2-pyridin-2-ylpyrimidine as the minimum element for the inhibition of HsMetAP1; (2) 5′-chloro as the favored substituent on the pyridine ring for the enhanced potency against HsMetAP1; and (3) long C4 side chains as the essentials for higher HsMetAP1-selectivity. At the end of our SAR campaign, 25b, 25c, 26d and 30a30c are among the most selective and potent inhibitors of purified HsMetAP1 reported to date. In addition, we also performed crystallographic analysis of one representative inhibitor (26d) in complex with N-terminally truncated HsMetAP1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号