首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21828篇
  免费   1941篇
  国内免费   234篇
  2023年   119篇
  2022年   249篇
  2021年   531篇
  2020年   319篇
  2019年   369篇
  2018年   477篇
  2017年   426篇
  2016年   622篇
  2015年   1046篇
  2014年   1064篇
  2013年   1358篇
  2012年   1644篇
  2011年   1560篇
  2010年   1002篇
  2009年   902篇
  2008年   1301篇
  2007年   1165篇
  2006年   1055篇
  2005年   1006篇
  2004年   988篇
  2003年   882篇
  2002年   844篇
  2001年   488篇
  2000年   387篇
  1999年   388篇
  1998年   254篇
  1997年   160篇
  1996年   157篇
  1995年   161篇
  1994年   145篇
  1993年   128篇
  1992年   200篇
  1991年   225篇
  1990年   174篇
  1989年   186篇
  1988年   165篇
  1987年   159篇
  1986年   137篇
  1985年   151篇
  1984年   134篇
  1983年   102篇
  1982年   89篇
  1981年   91篇
  1980年   87篇
  1979年   96篇
  1978年   89篇
  1977年   79篇
  1975年   63篇
  1974年   70篇
  1973年   58篇
排序方式: 共有10000条查询结果,搜索用时 6 毫秒
961.
Recent studies confirm that intracellular cAMP concentrations are nonuniform and that localized subcellular cAMP hydrolysis by cyclic nucleotide phosphodiesterases (PDEs) is important in maintaining these cAMP compartments. Human phosphodiesterase 3B (HSPDE3B), a member of the PDE3 family of PDEs, represents the dominant particulate cAMP-PDE activity in many cell types, including adipocytes and cells of hematopoietic lineage. Although several previous reports have shown that phosphorylation of HSPDE3B by either protein kinase A (PKA) or protein kinase B (PKB) activates this enzyme, the mechanisms that allow cells to distinguish these two activated forms of HSPDE3B are unknown. Here we report that PKA phosphorylates HSPDE3B at several distinct sites (Ser-73, Ser-296, and Ser-318), and we show that phosphorylation of HSPDE3B at Ser-318 activates this PDE and stimulates its interaction with 14-3-3 proteins. In contrast, although PKB-catalyzed phosphorylation of HSPDE3B activates this enzyme, it does not promote 14-3-3 protein binding. Interestingly, we report that the PKA-phosphorylated, 14-3-3 protein-bound, form of HSPDE3B is protected from phosphatase-dependent dephosphorylation and inactivation. In contrast, PKA-phosphorylated HSPDE3B that is not bound to 14-3-3 proteins is readily dephosphorylated and inactivated. Our data are presented in the context that a selective interaction between PKA-activated HSPDE3B and 14-3-3 proteins represents a mechanism by which cells can protect this enzyme from deactivation. Moreover, we propose that this mechanism may allow cells to distinguish between PKA- and PKB-activated HSPDE3B.  相似文献   
962.
Conjugative systems contain an essential integral membrane protein involved in DNA transport called the Type IV coupling protein (T4CP). The T4CP of conjugative plasmid R388 is TrwB, a DNA-dependent ATPase. Biochemical and structural data suggest that TrwB uses energy released from ATP hydrolysis to pump DNA through its central channel by a mechanism similar to that used by F1-ATPase or ring helicases. For DNA transport, TrwB couples the relaxosome (a DNA-protein complex) to the secretion channel. In this work we show that TrwA, a tetrameric oriT DNA-binding protein and a component of the R388 relaxosome, stimulates TrwBDeltaN70 ATPase activity, revealing a specific interaction between the two proteins. This interaction occurs via the TrwA C-terminal domain. A 68-kDa complex between TrwBDeltaN70 and TrwA C-terminal domain was observed by gel filtration chromatography, consistent with a 1:1 stoichiometry. Additionally, electron microscopy revealed the formation of oligomeric TrwB complexes in the presence, but not in the absence, of TrwA protein. TrwBDeltaN70 ATPase activity in the presence of TrwA was further enhanced by DNA. Interestingly, maximal ATPase rates were achieved with TrwA and different types of dsDNA substrates. This is consistent with a role of TrwA in facilitating the interaction between TrwB and DNA. Our findings provide a new insight into the mechanism by which TrwB recruits the relaxosome for DNA transport. The process resembles the mechanism used by other DNA-dependent molecular motors, such as the RuvA/RuvB system, to be targeted to the DNA followed by hexamer assembly.  相似文献   
963.
964.
Autocrine motility factor (AMF) is internalized via a receptor-mediated, dynamin-dependent, cholesterol-sensitive raft pathway to the smooth endoplasmic reticulum that is negatively regulated by caveolin-1. Expression of AMF and its receptor (AMFR) is associated with tumor progression and malignancy; however, the extent to which the raft-dependent uptake of AMF is tumor cell-specific has yet to be addressed. By Western blot and cell surface fluorescence-activated cell sorter (FACS) analysis, AMFR expression is increased in tumorigenic MCF7 and metastatic MDA-231 and MDA-435 breast cancer cell lines relative to dysplastic MCF10A mammary epithelial cells. AMF uptake, determined by FACS measurement of protease-insensitive internalized fluorescein-conjugated AMF, was increased in MCF7 and MDA-435 cells relative to MCF-10A and caveolin-1-expressing MDA-231 cells. Uptake of fluorescein-conjugated AMF was dynamin-dependent, methyl-beta-cyclodextrin- and genistein-sensitive, reduced upon overexpression of caveolin-1 in MDA-435 cells, and increased upon short hairpin RNA reduction of caveolin-1 in MDA-231 cells. Tissue microarray analysis of invasive primary human breast carcinomas showed that AMFR expression had no impact on survival but did correlate significantly with expression of phospho-Akt. Phospho-Akt expression was increased in AMF-internalizing MCF7 and MDA-435 breast carcinoma cells. AMF uptake in these cells was reduced by phosphatidylinositol 3-kinase inhibition but not by regulators of macropinocytosis such as amiloride, phorbol ester, or actin cytoskeleton disruption by cytochalasin D. The raft-dependent endocytosis of AMF therefore follows a distinct phosphatidylinositol 3-kinase-dependent pathway that is up-regulated in more aggressive tumor cells.  相似文献   
965.
Dynamin is functionally coupled to insulin granule exocytosis   总被引:1,自引:0,他引:1  
The insulin granule integral membrane protein marker phogrin-green fluorescent protein was co-localized with insulin in Min6B1 beta-cell secretory granules but did not undergo plasma membrane translocation following glucose stimulation. Surprisingly, although expression of a dominant-interfering dynamin mutant (Dyn/K44A) inhibited transferrin receptor endocytosis, it had no effect on phogringreen fluorescent protein localization in the basal or secretagogue-stimulated state. By contrast, co-expression of Dyn/K44A with human growth hormone as an insulin secretory marker resulted in a marked inhibition of human growth hormone release by glucose, KCl, and a combination of multiple secretagogues. Moreover, serial pulse depolarization stimulated an increase in cell surface capacitance that was also blocked in cells expressing Dyn/K44A. Similarly, small interference RNA-mediated knockdown of dynamin resulted in marked inhibition of glucose-stimulated insulin secretion. Together, these data suggest the presence of a selective kiss and run mechanism of insulin release. Moreover, these data indicate a coupling between endocytosis and exocytosis in the regulation of beta-cell insulin secretion.  相似文献   
966.
Junctional Adhesion Molecules (JAMs) have been described as major components of tight junctions in endothelial and epithelial cells. Tight junctions are crucial for the establishment and maintenance of cell polarity. During tumor development, they are remodeled, enabling neoplastic cells to escape from constraints imposed by intercellular junctions and to adopt a migratory behavior. Using a carcinoma cell line we tested whether JAM-C could affect tight junctions and migratory properties of tumor cells. We show that transfection of JAM-C improves the tight junctional barrier in tumor cells devoid of JAM-C expression. This is dependent on serine 281 in the cytoplasmic tail of JAM-C because serine mutation into alanine abolishes the specific localization of JAM-C in tight junctions and establishment of cell polarity. More importantly, the same mutation stimulates integrin-mediated cell migration and adhesion via the modulation of beta1 and beta3 integrin activation. These results highlight an unexpected function for JAM-C in controlling epithelial cell conversion from a static, polarized state to a pro-migratory phenotype.  相似文献   
967.
Immuno-spin trapping is a highly sensitive method for detecting DNA radicals in biological systems. This technique involves three main steps: (i) in situ and real-time trapping of DNA radicals with the nitrone spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), thus forming DMPO-DNA nitrone adducts (referred to here as nitrone adducts); (ii) purification of nitrone adducts; and (iii) analysis of nitrone adducts by heterogeneous immunoassays using Abs against DMPO. In experiments, DMPO is added prior to the formation of free radicals. It diffuses easily through all cell compartments and is present when DNA free radicals are formed as a result of oxidative damage. Due to its low toxicity, DMPO can be used in cells at high enough concentrations to out-compete the normal reactions of DNA radicals, thus ensuring a high yield of DNA nitrone adducts. Because both protein and DNA nitrone adducts are formed, it is important that the DNA be pure in order to avoid misinterpretations. Depending on the model under study, this protocol can be completed in as few as 6 h.  相似文献   
968.
969.
This protocol details methods for the isolation of yeast nuclei from budding yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe), immuno-gold labeling of proteins and visualization by field emission scanning electron microscopy (FESEM). This involves the removal of the yeast cell wall and isolation of the nucleus from within, followed by subsequent processing for high-resolution microscopy. The nuclear isolation step can be performed in two ways: enzymatic treatment of yeast cells to rupture the cell wall and generate spheroplasts (cells that have partially lost their cell wall and their characteristic shape), followed by isolation of the nuclei by centrifugation or homogenization; and whole cell freezing followed by manual cell rupture and centrifugation. This protocol has been optimized for the visualization of the yeast nuclear envelope (NE), nuclear pore complexes (NPCs) and associated cyto-skeletal structures. Samples once processed for FESEM can be stored under vacuum for weeks, allowing considerable time for image acquisition.  相似文献   
970.
Computational neurobiology was born over half a century ago, and has since been consistently at the forefront of modelling in biology. The recent progress of computing power and distributed computing allows the building of models spanning several scales, from the synapse to the brain. Initially focused on electrical processes, the simulation of neuronal function now encompasses signalling pathways and ion diffusion. The flow of quantitative data generated by the "omics" approaches, alongside the progress of live imaging, allows the development of models that will also include gene regulatory networks, protein movements and cellular remodelling. A systems biology of brain functions and disorders can now be envisioned. As it did for the last half century, neuroscience can drive forward the field of systems biology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号