首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9228篇
  免费   809篇
  国内免费   12篇
  2023年   33篇
  2022年   104篇
  2021年   197篇
  2020年   103篇
  2019年   141篇
  2018年   187篇
  2017年   185篇
  2016年   265篇
  2015年   460篇
  2014年   502篇
  2013年   645篇
  2012年   792篇
  2011年   765篇
  2010年   500篇
  2009年   422篇
  2008年   644篇
  2007年   591篇
  2006年   554篇
  2005年   532篇
  2004年   483篇
  2003年   435篇
  2002年   430篇
  2001年   90篇
  2000年   53篇
  1999年   80篇
  1998年   110篇
  1997年   67篇
  1996年   55篇
  1995年   34篇
  1994年   50篇
  1993年   40篇
  1992年   30篇
  1991年   31篇
  1990年   36篇
  1989年   25篇
  1988年   27篇
  1987年   28篇
  1986年   27篇
  1985年   18篇
  1984年   27篇
  1983年   14篇
  1982年   30篇
  1981年   26篇
  1980年   25篇
  1979年   26篇
  1978年   17篇
  1977年   16篇
  1974年   21篇
  1972年   16篇
  1971年   12篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
201.
The adult skeletal muscle stem cells, satellite cells, are responsible for skeletal muscle growth and regeneration. Satellite cells represent a heterogeneous cell population that differentially express cell surface markers. The membrane-associated heparan sulfate proteoglycans, syndecan-4, and glypican-1, are differentially expressed by satellite cells during the proliferation and differentiation stages of satellite cells. However, how the population of syndecan-4- or glypican-1-positive satellite cells changes during proliferation and differentiation, and how sex and muscle growth potential affect the expression of these genes is unknown. Differences in the amount of satellite cells positive for syndecan-4 or glypican-1 would affect the process of proliferation and differentiation which would impact both muscle mass accretion and the regeneration of muscle. In the current study, the percentage of satellite cells positive for syndecan-4 or glypican-1 from male and female turkeys from a Randombred Control Line 2 and a line (F) selected for increased 16-week body weight were measured during proliferation and differentiation. Growth selection altered the population of syndecan-4- and glypican-1-positive satellite cells and there were sex differences in the percentage of syndecan-4- and glypican-1-positive satellite cells. This study provides new information on dynamic changes in syndecan-4- and glypican-1-positive satellite cells showing that they are differentially expressed during myogenesis and growth selection and sex affects their expression.  相似文献   
202.
Chromoblastomycosis is a chronic cutaneous and subcutaneous mycosis. The management of this infection continues to be challenging because there is no consensus on the therapeutic regimen. We report here a case of a 69-year-old male patient with cauliflower-like lesions on his left leg and foot. He had already been treated with itraconazole at a dose of 200 mg/day for 5 months, with mycological cure for all the affected areas. However, the lesions relapsed at both sites, and treatment with itraconazole was resumed at the dose previously used. Initially, direct mycological examination, cultural, and microculture slide observation were performed. Afterward, sequencing of the ITS1-5.8S rDNA-ITS2 region of the fungal DNA and evaluation of its susceptibility to antifungal agents alone and in combination were performed. In direct mycological examination, the presence of sclerotic cells was verified, and the fungus was identified as Fonsecaea based on cultural and microscopic examinations. Identification as Fonsecaea monophora was confirmed after sequencing of the ITS region and phylogenetic analysis. The isolate was susceptible to itraconazole and terbinafine. The combinations of amphotericin B and terbinafine and terbinafine and voriconazole were synergistic. The use of drugs for which the causative agent is susceptible to singly or in combination may be an alternative for the treatment of mycosis. Furthermore, the identification of the agent by molecular techniques is important for epidemiological purposes. To the best of our knowledge, this is the first case of relapsed chromoblastomycosis caused by F. monophora in Brazil.  相似文献   
203.
Monosodium glutamate-obese rats are glucose intolerant and insulin resistant. Their pancreatic islets secrete more insulin at increasing glucose concentrations, despite the possible imbalance in the autonomic nervous system of these rats. Here, we investigate the involvement of the cholinergic/protein kinase (PK)-C and PKA pathways in MSG β-cell function. Male newborn Wistar rats received a subcutaneous injection of MSG (4 g/kg body weight (BW)) or hyperosmotic saline solution during the first 5 days of life. At 90 days of life, plasma parameters, islet static insulin secretion and protein expression were analyzed. Monosodium glutamate rats presented lower body weight and decreased nasoanal length, but had higher body fat depots, glucose intolerance, hyperinsulinemia and hypertrigliceridemia. Their pancreatic islets secreted more insulin in the presence of increasing glucose concentrations with no modifications in the islet-protein content of the glucose-sensing proteins: the glucose transporter (GLUT)-2 and glycokinase. However, MSG islets presented a lower secretory capacity at 40 mM K+ (P < 0.05). The MSG group also released less insulin in response to 100 μM carbachol, 10 μM forskolin and 1 mM 3-isobutyl-1-methyl-xantine (P < 0.05, P < 0.0001 and P < 0.01). These effects may be associated with a the decrease of 46 % in the acetylcholine muscarinic type 3 (M3) receptor, and a reduction of 64 % in PKCα and 36 % in PKAα protein expressions in MSG islets. Our data suggest that MSG islets, whilst showing a compensatory increase in glucose-induced insulin release, demonstrate decreased islet M3/PKC and adenylate cyclase/PKA activation, possibly predisposing these prediabetic rodents to the early development of β-cell dysfunction.  相似文献   
204.
The production of oysters in Guaratuba Bay, in the state of Paraná, Brazil, is still a mixed activity of mariculture and extractivism. The sustainable development of this production requires the monitoring of environmental, genetic, reproductive, and zootechnical variables. This study evaluated the importance of these variables on Crassostrea oyster production. Data were obtained between September 2009 and February 2011 from six evaluations: water quality, oyster larvae in plankton, capture of oyster spat by artificial collectors, molecular identification of collected spat and larvae, continuous evaluation of the reproductive maturity stage of adult oysters, and zootechnical performance achieved by experimental production. Temperature, dissolved oxygen, and water transparency were the environmental factors that had the most influence on the reproductive cycle (e.g. gonadal development and spat capture) and on the growth of the oyster. The highest rates for spat uptake were recorded in the summer, coinciding with the peak of sexual maturity of adults. The growth of the oysters, in terms of the weight of the meat, was related to the gonadal stage.  相似文献   
205.
ABSTRACT

Insects express diverse behavioral rhythms synchronized to environmental cycles. While circadian entrainment to light–dark cycles is ubiquitous in living organisms, synchronization to non-photic cycles may be critical for hematophagous bugs that depend on rhythmic hosts. The purpose was to determine whether Triatoma infestans are capable of synchronizing to the circadian rhythms of potential hosts with temporally distinct activity patterns; and, if so, if this synchronization occurs through masking or entrainment. Precise synchronization with the food source may be critical for the insects’ survival due to the specific predatory or defensive nature of each host. Kissing bugs were housed in a compartment in constant dark, air-flow-connected to another compartment with a nocturnal or a diurnal host; both hosts were synchronized to a light–dark cycle. The activity rhythms of kissing bugs were modulated by the daily activity rhythms of the vertebrates. Effects were a decrease in the endogenous circadian period, independent of the host being nocturnal or diurnal; in some cases relative coordination occurred and in others synchronization was clearly achieved. Moreover, splitting and bimodality arose, phenomena that were also affected by the host presence. The results indicate that T. infestans were able to detect the non-photic cycle of their potential hosts, an ability that surely facilitates feeding and hinders predation risk. Understanding triatomines behavior is of fundamental importance to the design of population control methods.  相似文献   
206.
Circadian rhythms are regarded as essentially ubiquitous features of animal behavior and are thought to confer important adaptive advantages. However, although circadian systems of rodents have been among the most extensively studied, most comparative biology is restricted to a few related species. In this study, the circadian organization of locomotor activity was studied in the subterranean, solitary north Argentinean rodent, Ctenomys knightii. The genus, Ctenomys, commonly known as Tuco‐tucos, comprises more than 50 known species over a range that extends from 12°S latitude into Patagonia, and includes at least one social species. The genus, therefore, is ideal for comparative and ecological studies of circadian rhythms. Ctenomys knightii is the first of these to be studied for its circadian behavior. All animals were wild caught but adapted quickly to laboratory conditions, with clear and precise activity‐rest rhythms in a light‐dark (LD) cycle and strongly nocturnal wheel running behavior. In constant dark (DD), the rhythm expression persisted with free‐running periods always longer than 24 h. Upon reinstatement of the LD cycle, rhythms resynchronized rapidly with large phase advances in 7/8 animals. In constant light (LL), six animals had free‐running periods shorter than in DD, and 4/8 showed evidence of “splitting.” We conclude that under laboratory conditions, in wheel‐running cages, this species shows a clear nocturnal rhythmic organization controlled by an endogenous circadian oscillator that is entrained to 24 h LD cycles, predominantly by light‐induced advances, and shows the same interindividual variable responses to constant light as reported in other non‐subterranean species. These data are the first step toward understanding the chronobiology of the largest genus of subterranean rodents.  相似文献   
207.
Methoxypyrazines (MPs) are strongly odorant volatile molecules with vegetable-like fragrances that are widespread in plants. Some grapevine (Vitis vinifera) varieties accumulate significant amounts of MPs, including 2-methoxy-3-isobutylpyrazine (IBMP), which is the major MP in grape berries. MPs are of particular importance in white Sauvignon Blanc wines. The typicality of these wines relies on a fine balance between the pea pod, capsicum character of MPs and the passion fruit/grapefruit character due to volatile thiols. Although MPs play a crucial role in Sauvignon varietal aromas, excessive concentrations of these powerful odorants alter wine quality and reduce consumer acceptance, particularly in red wines. The last step of IBMP biosynthesis has been proposed to involve the methoxylation of the nonvolatile precursor 2-hydroxy-3-isobutylpyrazine to give rise to the highly volatile IBMP. In this work, we have used a quantitative trait loci approach to investigate the genetic bases of IBMP biosynthesis. This has led to the identification of two previously uncharacterized S-adenosyl-methionine-dependent O-methyltransferase genes, termed VvOMT3 and VvOMT4. Functional characterization of these two O-methyltransferases showed that the VvOMT3 protein was highly specific and efficient for 2-hydroxy-3-isobutylpyrazine methylation. Based on its differential expression in high- and low-MP-producing grapevine varieties, we propose that VvOMT3 is a key gene for IBMP biosynthesis in grapevine.The pleasure experienced while enjoying a glass of wine is the result of sophisticated sensory, neurophysiological, and psychological processes triggered by wine aroma. Wine flavor is the result of a complex mixture of volatile compounds in the headspace of the glass that induces feelings of pleasure at the brain level (Shepherd, 2006). During the last 40 years, over 800 volatile molecules have been formally identified in wines, in concentrations ranging from hundreds of milligrams per liter down to a few picograms per liter (Ebeler and Thorngate, 2009; Styger et al., 2011). Among all of them, a relatively limited number of compounds, called varietal (or primary) aromas, play a crucial role in wine flavor and typicality. These aromas, which are related to the grape variety, belong to a limited number of chemical families, including monoterpenes, C13 norisoprenoids, volatile sulfur compounds, and methoxypyrazines (MPs; Ebeler and Thorngate, 2009). Quite frequently, they exist mostly in the grape (Vitis vinifera) berry as nonvolatile, odorless, “bound” forms that can be released by chemical and enzymatic reactions occurring during the winemaking and wine aging processes, thus enhancing wine’s varietal expression (Styger et al., 2011). Two classical examples are the glycoside precursors of the monoterpenols (Strauss et al., 1986) and the cysteinylated or glutathionylated precursors of the volatile thiols (Tominaga et al., 1998; Peña-Gallego et al., 2012). Noticeable exceptions are the MPs, which are found in grape berries exclusively as free, volatile molecules.MPs are strongly odorant volatile heterocycles, with vegetable-like fragrances, that are widely occurring in the plant kingdom (Maga, 1982). In grape, they can be detected in fruits, leaves, shoots, and roots (Dunlevy et al., 2010). They are found in different grape varieties and are particularly abundant in the so-called Bordeaux cultivars (i.e. cv Cabernet Franc, Cabernet Sauvignon [CS], Sauvignon Blanc, Merlot, and Carménère [Car]; Bayonove et al., 1975; Lacey et al., 1991; Roujou de Boubée et al., 2002; Belancic and Agosin, 2007), whereas they are rarely detected in other cultivars, such as cv Pinot Noir (PN), Chardonnay, or Petit Verdot (PV). This finding indicates a strong genotype dependency of MP biosynthesis (Koch et al., 2010). MPs are accumulated in berries until bunch closure or véraison, and then their level declines after véraison (Hashizume and Samuta, 1999; Ryona et al., 2008). MP concentration in wine is highly correlated with the grape berry content at harvest (Roujou de Boubée et al., 2002). Three MPs are found in grape berries: 2-methoxy-3-isobutylpyrazine (IBMP), which is the most abundant, and two others, 2-methoxy-3-isopropylpyrazine (IPMP) and 2-methoxy-3-sec-butylpyrazine (SBMP; Ebeler and Thorngate, 2009). Both IBMP and IPMP display very low sensory detection thresholds in the wine matrix, ranging from 1 to 16 ng L–1.MPs are of particular importance in white Sauvignon Blanc wines. The typicality of these wines relies on a fine balance between the pea pod, capsicum character of MPs and the passion fruit/grapefruit character due to volatile thiols (Dubourdieu et al., 2006; Lund et al., 2009). Although MPs play a crucial role in Sauvignon varietal aromas, excessive concentrations of these extremely powerful odorants will reduce consumer acceptance (Parr et al., 2007). In red wine, MPs are considered as off-flavor, and red wines can be depreciated by concentrations above 10 ng L–1 (Allen et al., 1991; Roujou de Boubée et al., 2000; Belancic and Agosin, 2007). Given the importance of MPs, either as typical varietal aromas or as detrimental off-flavors, deciphering the genetic and molecular determinism of their accumulation is of high interest for viticulture.In spite of this, until recently little was known about the MP biosynthesis pathway or the MP biosynthetic genes, either in grapevine or other plant species. Theoretical biosynthesis pathways have been proposed since the mid-1970s. They all start by the addition of an α-dicarbonyl on a branched amino acid (Leu for IBMP, Val for IPMP) to form a 2-hydroxy-3-alkylpyrazine, which is subsequently transformed into the corresponding MP, by a methoxylation reaction (Murray and Whitfield 1975; Gallois et al., 1988). While the initial addition step remains to be demonstrated in plants, an S-adenosyl-l-Met (SAM)-dependent O-methyltransferase (OMT), capable of converting 2-hydroxy-3-isobutylpyrazine (IBHP) into IBMP, has been detected in CS shoots, partially purified and sequenced (Hashizume et al., 2001a, 2001b; Fig. 1). Recently, Dunlevy et al. (2010) characterized two OMTs, VvOMT1 and VvOMT2, capable of methylating IBHP in vitro, albeit with high apparent Km values. To investigate the genetic bases of MP biosynthesis in grape berries, we performed a quantitative trait loci (QTL) analysis, which has led to the identification of two previously uncharacterized OMTs termed VvOMT3 and VvOMT4. Functional characterization of these two OMTs showed that VvOMT3 was highly specific and efficient for IBHP methylation. Based on its differential expression in high-MP and low-MP grapevine varieties, we propose that VvOMT3 and, to a lesser extent, VvOMT4 are key genes for MP biosynthesis in grapevine berries.Open in a separate windowFigure 1.Putative biosynthesis pathway for IBMP adapted from Hashizume et al. (2001a). SAHcy, S-Adenosyl-l-homo-Cys.  相似文献   
208.
Neutralization-resistant simian-human immunodeficiency virus AD8 (SHIVAD8) variants that emerged in an infected macaque elite neutralizer targeting the human immunodeficiency virus type 1 (HIV-1) gp120 N332 glycan acquired substitutions of critical amino acids in the V3 region rather than losing the N332 glycosylation site. One of these resistant variants, carrying the full complement of gp120 V3 changes, was also resistant to the potent anti-HIV-1 monoclonal neutralizing antibodies PGT121 and 10-1074, both of which are also dependent on the presence of the gp120 N332 glycan.  相似文献   
209.
Using the National Longitudinal Survey of Freshmen (NLSF), we examine both between- and within-group differences in the odds of feeling intraracially harassed. Specifically, we investigate the effects of colleges’ and universities’ racial composition as well as the nature of students’ associations with non-group members, including involvement in racially homogeneous campus organizations, ethnoracial diversity of friendship networks, and interracial dating. Our findings suggest that although college racial composition appears to have little effect on experiencing intraracial harassment, the nature of students’ involvement with other-race students matters a great deal. For all groups, interracial dating increased odds of harassment. Among black and white students, more diverse friendship networks did as well. And among Asian and Latino students, involvement in any racially homogeneous campus organization was associated with increases in reports of intraracial harassment. Thus, we propose a baseline theoretical model of intraracial harassment that highlights the nature of students’ associations with outgroups.  相似文献   
210.
Keratinocyte mobilization is a critical aspect of wound re-epithelialization, but the mechanisms that control its precise regulation remain poorly understood. We set out to test the hypothesis that forkhead box O1 (FOXO1) has a negative effect on healing because of its capacity to inhibit proliferation and promote apoptosis. Contrary to expectations, FOXO1 is required for keratinocyte transition to a wound-healing phenotype that involves increased migration and up-regulation of transforming growth factor β1 (TGF-β1) and its downstream targets, integrin-α3 and -β6 and MMP-3 and -9. Furthermore, we show that FOXO1 functions in keratinocytes to reduce oxidative stress, which is necessary to maintain cell migration and prevent cell death in a TGF-β1–independent manner. Thus, our studies identify a novel function for FOXO1 in coordinating the response of keratinocytes to wounding through up-regulation of TGF-β1 and other factors needed for keratinocyte migration and protection against oxidative stress, which together promote migration and decrease apoptosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号