首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9244篇
  免费   813篇
  国内免费   12篇
  10069篇
  2023年   41篇
  2022年   116篇
  2021年   197篇
  2020年   103篇
  2019年   141篇
  2018年   187篇
  2017年   185篇
  2016年   265篇
  2015年   460篇
  2014年   502篇
  2013年   645篇
  2012年   792篇
  2011年   765篇
  2010年   500篇
  2009年   422篇
  2008年   644篇
  2007年   591篇
  2006年   554篇
  2005年   532篇
  2004年   483篇
  2003年   435篇
  2002年   430篇
  2001年   90篇
  2000年   53篇
  1999年   80篇
  1998年   110篇
  1997年   67篇
  1996年   55篇
  1995年   34篇
  1994年   50篇
  1993年   40篇
  1992年   30篇
  1991年   31篇
  1990年   36篇
  1989年   25篇
  1988年   27篇
  1987年   28篇
  1986年   27篇
  1985年   18篇
  1984年   27篇
  1983年   14篇
  1982年   30篇
  1981年   26篇
  1980年   25篇
  1979年   26篇
  1978年   17篇
  1977年   16篇
  1974年   21篇
  1972年   16篇
  1971年   12篇
排序方式: 共有10000条查询结果,搜索用时 59 毫秒
121.
Several properties of psychrophilic pseudomonads were studied with cells grown in batch culture in nutrient broth at 2 and 30 C. No differences were observed in the size, catalase activity, deoxyribonucleic acid, ribonucleic acid, or protein content of cells grown at either temperature. The importance of comparing physiologically similar cells is discussed.  相似文献   
122.
Syndecan-4 core protein is composed of extracellular, transmembrane, and cytoplasmic domains. The cytoplasmic domain functions in transmitting signals into the cell through the protein kinase C alpha (PKCα) pathway. The glycosaminoglycan (GAG) and N-linked glycosylated (N-glycosylated) chains attached to the extracellular domain influence cell proliferation. The current study investigated the function of syndecan-4 cytoplasmic domain in combination with GAG and N-glycosylated chains in turkey muscle cell proliferation, differentiation, fibroblast growth factor 2 (FGF2) responsiveness, and PKCα membrane localization. Syndecan-4 or syndecan-4 without the cytoplasmic domain and with or without the GAG and N-glycosylated chains were transfected or co-transfected with a small interfering RNA targeting syndecan-4 cytoplasmic domain into turkey muscle satellite cells. The overexpression of syndecan-4 mutants increased cell proliferation but did not change differentiation. Syndecan-4 mutants had increased cellular responsiveness to FGF2 during proliferation. Syndecan-4 increased PKCα cell membrane localization, whereas the syndecan-4 mutants decreased PKCα cell membrane localization compared to syndecan-4. However, compared to the cells without transfection, syndecan-4 mutants increased cell membrane localization of PKCα. These data indicated that the syndecan‐4 cytoplasmic domain and the GAG and N-glycosylated chains are critical in syndecan-4 regulating satellite cell proliferation, responsiveness to FGF2, and PKCα cell membrane localization.  相似文献   
123.
Metabolic alterations are a key player involved in the onset of Alzheimer disease pathophysiology and, in this review, we focus on diet, metabolic rate, and neuronal size differences that have all been shown to play etiological and pathological roles in Alzheimer disease. Specifically, one of the earliest manifestations of brain metabolic depression in these patients is a sustained high caloric intake meaning that general diet is an important factor to take in account. Moreover, atrophy in the vasculature and a reduced glucose transporter activity for the vessels is also a common feature in Alzheimer disease. Finally, the overall size of neurons is larger in cases of Alzheimer disease than that of age-matched controls and, in individuals with Alzheimer disease, neuronal size inversely correlates with disease duration and positively associates with oxidative stress. Overall, clarifying cellular and molecular manifestations involved in metabolic alterations may contribute to a better understanding of early Alzheimer disease pathophysiology. Special issue dedicated to John P. Blass. Gemma Casadesus and Paula I. Moreira contributed equally to this paper. Aspects of this paper were previously presented in Neurochemical Research 28, 1549–1552, 2003 and the Journal of Alzheimer’s Disease 1, 203–206, 1999 and were used here with permission.  相似文献   
124.
Genetic linkage studies have mapped Huntington's disease (HD) to the distal portion of the short arm of chromosome 4 (4p16.3), 4 cM distal to D4S10 (G8). To date, no definite flanking marker has been identified. A new DNA marker, D4S90 (D5), which maps to the distal region of 4p16.3, is described. The marker was used in a genetic linkage study in the CEPH reference families with seven other markers at 4p16. The study, together with knowledge of the physical map of the region, places D4S90 as the most distal marker, 6 cM from D4S10. A provisional linkage study with HD gave a maximum lod score of 2.14 at a θ of 0.00 and no evidence of linkage disequilibrium. As D4S90 appears to be located terminally, it should play an important role in the accurate mapping and cloning of the HD gene.  相似文献   
125.
Reactive cardiac fibrosis resulting from chronic pressure overload (PO) compromises ventricular function and contributes to congestive heart failure. We explored whether nonreceptor tyrosine kinases (NTKs) play a key role in fibrosis by activating cardiac fibroblasts (CFb), and could potentially serve as a target to reduce PO-induced cardiac fibrosis. Our studies were carried out in PO mouse myocardium induced by transverse aortic constriction (TAC). Administration of a tyrosine kinase inhibitor, dasatinib, via an intraperitoneally implanted mini-osmotic pump at 0.44 mg/kg/day reduced PO-induced accumulation of extracellular matrix (ECM) proteins and improved left ventricular geometry and function. Furthermore, dasatinib treatment inhibited NTK activation (primarily Pyk2 and Fak) and reduced the level of FSP1 positive cells in the PO myocardium. In vitro studies using cultured mouse CFb showed that dasatinib treatment at 50 nM reduced: (i) extracellular accumulation of both collagen and fibronectin, (ii) both basal and PDGF-stimulated activation of Pyk2, (iii) nuclear accumulation of Ki67, SKP2 and histone-H2B and (iv) PDGF-stimulated CFb proliferation and migration. However, dasatinib did not affect cardiomyocyte morphologies in either the ventricular tissue after in vivo administration or in isolated cells after in vitro treatment. Mass spectrometric quantification of dasatinib in cultured cells indicated that the uptake of dasatinib by CFb was greater that that taken up by cardiomyocytes. Dasatinib treatment primarily suppressed PDGF but not insulin-stimulated signaling (Erk versus Akt activation) in both CFb and cardiomyocytes. These data indicate that dasatinib treatment at lower doses than that used in chemotherapy has the capacity to reduce hypertrophy-associated fibrosis and improve ventricular function.  相似文献   
126.
Neomegalonema perideroedes (formerly Meganema perideroedes) str. G1 is the type strain and only described isolate of the genus Neomegalonema (formerly Meganema) which belongs to the Alphaproteobacteria. N. perideroedes is distinguished by the ability to accumulate high amounts of polyhydroxyalkanoates and has been associated with bulking problems in wastewater treatment plants due to its filamentous morphology. In 2013, its genome was sequenced as part of the Genomic Encyclopedia of Bacteria and Archaea (GEBA), which aims to improve the sequencing coverage of the poorly represented regions of the bacterial and archaeal branches of the tree of life. As N. perideroedes str. G1 is relatively distantly related to well described species—being the only sequenced member of its proposed family—the in silico prediction of genes by nucleotide homology to reference genes might be less reliable. Here, a proteomic dataset for the refinement of the N. perideroedes genome annotations is generated which clearly indicates the shortcomings of high‐throughput in silico genome annotation.  相似文献   
127.
In recent years, several genome‐wide association studies have identified candidate regions for genetic susceptibility in major mood disorders. Most notable are regions in a locus in chromosome 3p21, encompassing the genes NEK4‐ITIH1‐ITIH3‐ITIH4. Three of these genes represent heavy chains of the composite protein inter‐α‐inhibitor (IαI). In order to further establish associations of these genes with mood disorders, we evaluated behavioral phenotypes in mice deficient in either Ambp/bikunin, which is necessary for functional ITIH1 and ITIH3 complexes, or in Itih4, the gene encoding the heavy chain Itih4. We found that loss of Itih4 had no effect on the behaviors tested, but loss of Ambp/bikunin led to increased anxiety‐like behavior in the light/dark and open field tests and reduced exploratory activity in the elevated plus maze, light/dark preference and open field tests. Ambp/bikunin knockout mice also exhibited a sex‐dependent exaggeration of acoustic startle responses, alterations in social approach during a three‐chamber choice test, and an elevated fear conditioning response. These results provide experimental support for the role of ITIH1/ITIH3 in the development of mood disorders.  相似文献   
128.
Type 2 diabetes (T2D) affects over 320 million people worldwide. Healthy lifestyles, improved drugs and effective nutraceuticals are different components of a response against the growing T2D epidemic. The specialized metabolite montbretin A (MbA) is being developed for treatment of T2D and obesity due to its unique pharmacological activity as a highly effective and selective inhibitor of the human pancreatic α‐amylase. MbA is an acylated flavonol glycoside found in small amounts in montbretia (Crocosmia × crocosmiiflora) corms. MbA cannot be obtained in sufficient quantities for drug development from its natural source or by chemical synthesis. To overcome these limitations through metabolic engineering, we are investigating the genes and enzymes of MbA biosynthesis. We previously reported the first three steps of MbA biosynthesis from myricetin to myricetin 3‐O‐(6′‐O‐caffeoyl)‐glucosyl rhamnoside (mini‐MbA). Here, we describe the sequence of reactions from mini‐MbA to MbA, and the discovery and characterization of the gene and enzyme responsible for the glucosylation of mini‐MbA. The UDP‐dependent glucosyltransferase CcUGT3 (UGT703E1) catalyzes the 1,2‐glucosylation of mini‐MbA to produce myricetin 3‐O‐(glucosyl‐6′‐O‐caffeoyl)‐glucosyl rhamnoside. Co‐expression of CcUGT3 with genes for myricetin and mini‐MbA biosynthesis in Nicotiana benthamiana validated its biological function and expanded the set of genes available for metabolic engineering of MbA.  相似文献   
129.
Ikarugamycin (IKA) is a previously discovered antibiotic, which has been shown to inhibit the uptake of oxidized low‐density lipoproteins in macrophages. Furthermore, several groups have previously used IKA to inhibit clathrin‐mediated endocytosis (CME) in plant cell lines. However, detailed characterization of IKA has yet to be performed. Consequently, we performed biochemistry and microscopy experiments to further characterize the effects of IKA on CME. We show that IKA has an IC50 of 2.7 μm in H1299 cells and acutely inhibits CME, but not other endocytic pathways, in a panel of cell lines. Although long‐term incubation with IKA has cytotoxic effects, the short‐term inhibitory effects on CME are reversible. Thus, IKA can be a useful tool for probing routes of endocytic trafficking.   相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号