首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   854篇
  免费   67篇
  国内免费   1篇
  2022年   17篇
  2021年   23篇
  2020年   10篇
  2019年   16篇
  2018年   32篇
  2017年   29篇
  2016年   34篇
  2015年   51篇
  2014年   47篇
  2013年   61篇
  2012年   86篇
  2011年   70篇
  2010年   36篇
  2009年   25篇
  2008年   43篇
  2007年   41篇
  2006年   29篇
  2005年   24篇
  2004年   26篇
  2003年   29篇
  2002年   21篇
  2001年   15篇
  2000年   10篇
  1999年   8篇
  1998年   3篇
  1997年   6篇
  1996年   4篇
  1995年   6篇
  1994年   3篇
  1993年   3篇
  1992年   9篇
  1991年   3篇
  1990年   7篇
  1989年   5篇
  1988年   3篇
  1987年   3篇
  1984年   5篇
  1983年   4篇
  1982年   3篇
  1978年   8篇
  1977年   5篇
  1976年   6篇
  1975年   7篇
  1972年   3篇
  1971年   5篇
  1970年   7篇
  1969年   3篇
  1968年   2篇
  1967年   3篇
  1966年   4篇
排序方式: 共有922条查询结果,搜索用时 15 毫秒
101.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a ubiquitous messenger proposed to stimulate Ca(2+) release from acidic organelles via two-pore channels (TPCs). It has been difficult to resolve this trigger event from its amplification via endoplasmic reticulum Ca(2+) stores, fuelling speculation that archetypal intracellular Ca(2+) channels are the primary targets of NAADP. Here, we redirect TPC2 from lysosomes to the plasma membrane and show that NAADP evokes Ca(2+) influx independent of ryanodine receptors and that it activates a Ca(2+)-permeable channel whose conductance is reduced by mutation of a residue within a putative pore. We therefore uncouple TPC2 from amplification pathways and prove that it is a pore-forming subunit of an NAADP-gated Ca(2+) channel.  相似文献   
102.
NAADP (nicotinic acid-adenine dinucleotide phosphate) is a newly described intracellular messenger molecule that mediates Ca2+ increases in a variety of cells. However, little is known of the mechanism whereby ligand binding regulates the target protein. We report in the present paper that NAADP receptors from sea urchin eggs undergo an unusual stabilization process that appears to be dependent upon the time during which receptors are exposed to their ligand. We demonstrate that receptors 'tagged' with NAADP for short periods were more readily dissociated following subsequent delipidation than those labelled for longer. Stabilization of NAADP receptors by their ligand was delayed relative to ligand association taking on the order of minutes to develop at picomolar concentrations. The stabilizing effects of NAADP did not require cytosolic factors or the continued presence of NAADP and persisted upon solubilization. NAADP receptors, however, failed to stabilize at reduced temperature. We conclude that NAADP receptors possess a simple molecular memory endowing them with the remarkable ability to detect the duration of their activation.  相似文献   
103.
104.
The arsRDABC operon of Escherichia coli plasmid R773 encodes the ArsAB extrusion pump for the trivalent metalloids As(III) and Sb(III). ArsA, the catalytic subunit has two homologous halves, A1 and A2. Each half has a consensus signal transduction domain that physically connects the nucleotide-binding domain to the metalloid-binding domain. The relation between metalloid binding by ArsA and transport through ArsB is unclear. In this study, direct metalloid binding to ArsA was examined. The results show that ArsA binds a single Sb(III) with high affinity only in the presence of Mg(2+)-nucleotide. Mutation of the codons for Cys-113 and Cys-422 eliminated Sb(III) binding to purified ArsA. C113A/C422A ArsA has basal ATPase activity similar to that of the wild type but lacks metalloid-stimulated activity. Accumulation of metalloid was assayed in intact cells, where reduced uptake results from active extrusion by the ArsAB pump. Cells expressing the arsA(C113A/C422A)B genes had an intermediate level of metalloid resistance and accumulation between those expressing only arsB alone and those expressing wild type arsAB genes. The results indicate that, whereas metalloid stimulation of ArsA activity enhances the ability of the pump to reduce the intracellular concentration of metalloid, high affinity binding of metalloid by ArsA is not obligatory for transport or resistance. Yet, in mixed populations of cells bearing either arsAB or arsA(C113A/C422A)B growing in subtoxic concentrations of arsenite, cells bearing wild type arsAB replaced cells with mutant arsA(C113A/C422A)B in less than 1 week, showing that the metalloid binding site confers an evolutionary advantage.  相似文献   
105.
The bacterial ArsA ATPase is the catalytic component of an oxyanion pump that is responsible for resistance to arsenicals and antimonials. Homologues of the bacterial ArsA ATPase are widespread in nature. We had earlier identified the mouse homologue (Asna1) that exhibits 27% identity to the bacterial ArsA ATPase. To identify the physiological role of the protein, heterozygous Asna1 knockout mice (Asna1+/-) were generated by homologous recombination. The Asna1+/- mice displayed similar phenotype as the wild-type mice. However, early embryonic lethality was observed in homozygous Asna1 knockout embryos, between E3.5 (E=embryonic day) and E8.5 stage. These findings indicate that Asna1 plays a crucial role during early embryonic development.  相似文献   
106.
Plant based medicines have gained popularity worldwide due to their almost negligible side effects. In India, the three traditional medicinal systems, namely homeopathy, Ayurveda and Siddha rely heavily on plants for medicinal formulations. To prevent the indiscriminate collection of these valuable medicinal plants and for their proper authentication and conservation, it is imperative to go for sustained efforts towards proper germplasm cataloguing and devising conservation strategies. For this purpose, molecular markers have a significant role, as they provide information ranging from diversity at nucleotide level (single nucleotide polymorphisms) to gene and allele frequencies (genotype information), the extent and distribution of genetic diversity, and population structure. Over the past twenty years, the molecular marker field has completely transformed the meaning of conservation genetics which has emerged from a theory-based field of population biology to a full-fledged pragmatic discipline. In this review, we have explored the transition and transformation of molecular marker technologies throughout these years.  相似文献   
107.
The spice-derived phenolic, malabaricone C (mal C), has recently been shown to accelerate healing of the indomethacin-induced gastric ulceration in mice. In this study, we explored its anti-inflammatory activity and investigated the underlying mechanism of the action. Mal C suppressed the microvascular permeability and the levels of tumor necrosis factor-α, interleukin-1β, and nitric oxide in the lipopolysaccharide (LPS)-administered mice. At a dose of 10 mg/kg, it showed anti-inflammatory activity comparable to that of omeprazole (5 mg/kg) and dexamethasone (50 mg/kg). It also reduced the expression and activities of inducible nitric oxide synthase, cyclooxygenase-2, as well as the pro- vs anti-inflammatory cytokine ratio in the LPS-treated RAW macrophages. Mal C was found to inhibit LPS-induced NF-kB activation in RAW 264.7 cells by blocking the MyD88-dependent pathway. Mal C suppressed NF-κB activation and iNOS promoter activity, which correlated with its inhibitory effect on IκB phosphorylation and degradation, and NF-κB nuclear translocation, in the LPS-stimulated macrophages. It also inhibited LPS-induced phosphorylation of p38 and JNK, which are also upstream activators of NF-κB, without affecting Akt phosphorylation. Mal C also effectively blocked the PKR-mediated activation of NF-κB. These findings indicate that mal C exerts an anti-inflammatory effect through NF-κB-responsive inflammatory gene expressions by inhibiting the p38 and JNK-dependent canonical NF-κB pathway as well as the PKR pathway, and is a potential therapeutic agent against acute inflammation.  相似文献   
108.
Brain lipid metabolism was studied in rats following permanent bilateral common carotid artery ligation (BCCL), a model for chronic cerebral hypoperfusion. Unesterified (free) fatty acids (uFA) and acyl-CoA concentrations were measured 6 h, 24 h, and 7 days after BCCL or sham surgery, in high energy-microwaved brain. In BCCL compared to sham rats, cytosolic phospholipase A(2) (cPLA(2)) immunoreactivity in piriform cortex, and concentrations of total uFA and arachidonoyl-CoA, an intermediate for arachidonic acid reincorporation into phospholipids, were increased only at 6 h. At 24 h, immunoreactivity for secretory phospholipase A(2) (sPLA(2)), which may regulate blood flow, was increased near cortical and hippocampal blood vessels. BCCL did not affect levels of brain IB(4)+ microglia, glial fibrillary acidic protein (GFAP)+ astrocytes, cyclooxygenase-2 (COX-2) immunoreactivity at any time, but increased cPLA(2) immunoreactivity in one region at 6 h. Thus, BCCL affected brain lipid metabolism transiently, likely because of compensatory sPLA(2)-mediated vasodilation, without producing evidence of neuroinflammation.  相似文献   
109.
The MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide) assay is a classical method for screening cytotoxic anti-cancer agents. Candidate drugs from the MTT assay need in vivo models to test their efficiency and to assess the absorption, distribution, metabolism, excretion, and toxicity of the drugs. An in vivo screening model could increase the rate of development of anti-cancer drugs. Here, we used zebrafish to screen a library of 502 natural compounds and compared the results with those from an MTT assay of the MCF7 breast cancer cell line. We identified 59 toxic compounds in the zebrafish screen, 21 of which were also identified by the MTT assay, and 28 of which were already known for their anti-cancer and apoptosis-inducing effects. These compounds induced apoptosis and activated the p53 pathway in zebrafish within 3h treatment. Our results indicate that zebrafish is a simple, reliable and highly efficient in vivo tool for cancer drug screening, and could complement the MTT assay.  相似文献   
110.
Human cytomegalovirus (HCMV) has been found in malignant gliomas at variable frequencies with efforts to date focused on characterizing the role(s) of single gene products in disease. Here, we reexamined the HCMV prevalence in malignant gliomas using different methods and began to dissect the genetics of HCMV in tumors. HCMV DNA was found in 16/17 (94%) tumor specimens. Viral DNA copy numbers were found to be low and variable, ranging from 10(2) to 10(6) copies/500 ng of total DNA. The tumor tissues had incongruences between viral DNA copy numbers and protein levels. However, nonlatent protein expression was detected in many tumors. The viral UL83 gene, encoding pp65, was found to segregate into five cancer-associated genotypes with a bias for amino acid changes in glioblastoma multiforme (GBM) in comparison to the low-grade tumors. Deep sequencing of a GBM-associated viral population resulted in 81,224 bp of genome coverage. Sequence analysis revealed the presence of intact open reading frames and higher numbers of high-frequency variations within the repeat long region compared to the unique long region, which harbors many core genes, and the unique short region (P = 0.001). This observation was in congruence with phylogenetic analyses across replication-competent viral strains in databases. The tumor-associated viral population was less variable (π = 0.1% and π(AA) = 0.08%) than that observed in other clinical infections. Moreover, 42/46 (91.3%) viral genes analyzed had dN/dS scores of <1, which is indicative of high amino acid sequence conservation. Taken together, these findings raise the possibility that replication-competent HCMV may exist in malignant gliomas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号