首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1151篇
  免费   49篇
  国内免费   1篇
  2023年   6篇
  2022年   20篇
  2021年   38篇
  2020年   25篇
  2019年   21篇
  2018年   48篇
  2017年   21篇
  2016年   44篇
  2015年   34篇
  2014年   67篇
  2013年   114篇
  2012年   108篇
  2011年   84篇
  2010年   71篇
  2009年   47篇
  2008年   48篇
  2007年   44篇
  2006年   49篇
  2005年   44篇
  2004年   45篇
  2003年   33篇
  2002年   36篇
  2001年   12篇
  2000年   15篇
  1999年   15篇
  1998年   12篇
  1997年   8篇
  1996年   7篇
  1995年   9篇
  1994年   8篇
  1993年   3篇
  1992年   5篇
  1991年   2篇
  1989年   4篇
  1988年   3篇
  1987年   5篇
  1986年   3篇
  1985年   8篇
  1984年   3篇
  1983年   3篇
  1981年   3篇
  1980年   3篇
  1979年   4篇
  1978年   3篇
  1977年   3篇
  1972年   2篇
  1964年   1篇
  1963年   1篇
  1961年   1篇
  1960年   1篇
排序方式: 共有1201条查询结果,搜索用时 265 毫秒
51.
The field of allelopathy is one of the most fascinating but controversial processes in plant ecology that offers an exciting, interdisciplinary, complex, and challenging study. In spite of the established role of soil microbes in plant health, their role has also been consolidated in studies of allelopathy. Moreover, allelopathy can be better understood by incorporating soil microbial ecology that determines the relevance of allelopathy phenomenon. Therefore, while discussing the role of allelochemicals in plant–plant interactions, the dynamic nature of soil microbes should not be overlooked. The occurrence and toxicity of allelochemicals in soil depend on various factors, but the type of microflora in the surroundings plays a crucial role because it can interfere with its allelopathic nature. Such microbes could be of prime importance for biological control management of weeds reducing the cost and ill effects of chemical herbicides. Among microbes, our main focus is on bacteria—as they are dominant among other microbes and are being used for enhancing crop production for decades—and fungi. Hence, to refer to both bacteria and fungi, we have used the term microbes. This review discusses the beneficial role of microbes in reducing the allelopathic effects of weeds. The review is mainly focused on various functions of bacteria in (1) reducing allelopathic inhibition caused by weeds to reduce crop yield loss, (2) building inherent defense capacity in plants against allelopathic weed, and (3) deciphering beneficial rhizospheric process such as chemotaxis/biofilm, degradation of toxic allelochemicals, and induced gene expression.  相似文献   
52.
We synthesized four cationic bile acid based facial amphiphiles featuring trimethyl ammonium head groups. We evaluated the role of these amphiphiles for cytotoxic activities against colon cancer cells and their membrane interactions by varying charge, hydration and hydrophobicity. The singly charged cationic Lithocholic acid based amphiphile (LCA-TMA1) is most cytotoxic, whereas the triply charged cationic Cholic acid based amphiphile (CA-TMA3) is least cytotoxic. Light microscopy and Annexin-FITC assay revealed that these facial amphiphiles caused late apoptosis. In addition, we studied the interactions of these amphiphiles with model membrane systems by Prodan-based hydration, DPH-based anisotropy, and differential scanning calorimetry. LCA-TMA1 is most hydrophobic with a hard charge causing efficient dehydration and maximum perturbations of membranes thereby facilitating translocation and high cytotoxicity against colon cancer cells. In contrast, the highly hydrated and multiple charged CA-TMA3 caused least membrane perturbations leading to low translocation and less cytotoxicity. As expected, Chenodeoxycholic acid and Deoxycholic acid based amphiphiles (CDCA-TMA2, DCA-TMA2) featuring two charged head groups showed intermediate behavior. Thus, we deciphered that charge, hydration, and hydrophobicity of these amphiphiles govern membrane interactions, translocation, and resulting cytoxicity against colon cancer cells.  相似文献   
53.
Off-flavour generated in soy products is ascribed to soybean seed lipoxygenase-1, lipoxygenase-2 and lipoxygenase-3, controlled by single dominant genes Lox1, Lox2 and Lox3, respectively. Lox2 locus has already been mapped and reported to be tightly linked with Lox1 locus. The objective of the present study was to map Lox1 locus by investigating the SSR markers reported to be linked with Lox2 locus and the neighbouring SSR markers in two mapping populations of 116 and 91 plants developed from LSb1 × PI408251 and JS335 × PI408251, respectively. Parental polymorphism was surveyed using SSR markers Sat_074, Satt522 reported to be linked with Lox2 locus and the SSR markers in its proximity. F2:3 seeds were used for assaying lipoxygenase-1 to identify the genotype of the F2 individuals. SSR marker Satt656 was found to be tightly linked with Lox1 locus at distance of 3.6 and 4.8 cM in the mapping population of LSb1 × PI408251 and JS335 × PI408251, respectively. SSR marker Satt656 can be useful for marker assisted selection for transferring recessive allele of lipoxygenase-1 in the background of high yielding soybean genotypes.  相似文献   
54.
55.
56.
57.
Crows (Corvus splendens) and white herons (Ardea alba) inhabit the agricultural landscapes nearby human habitats which represent dynamic ecosystem and show seasonal crop patterns. We studied the movement pattern in these birds at dawn and dusk, during solstices (December and June) and equinoxes (March and September). The movement directions were changed from uniform at dawn to a concentrated distribution at dusk all along the season suggesting that morning movements are more exploratory than evening with seasonal differences. Differential use of directions in December than June could be the effect of temperature, food availability or wind direction and speed. During breeding, less number of directions used suggests that birds might be moving towards the directions having high probability of food availability. It is likely that avian dispersal in space and time is dependent on the food availability however, further studies are required to be carried out.  相似文献   
58.
Microalgal biomass seems to be one of the potential alternative feedstocks for the production of various types of biofuel. In the present study, first of all, suitable growth media and harvesting time were determined for the freshwater chlorophyte microalga Acutodesmus dimorphus. Cultivation of A. dimorphus in BG-11 medium for 15 days resulted in the highest biomass productivity with 24.60 % lipid and 22.78 % carbohydrate contents. Further, thermotolerance property of A. dimorphus was evaluated by heat stressing the cells at 45 °C and 50 °C up to 24 h and determining the cell mortality and pigment composition along with lipid and carbohydrate contents. Chlorophyll and carotenoid contents of cells significantly increased after heat stress at 45 °C. Increasing the heat stress from 8 to 24 h increased the dead cells by 3–4 % at both temperatures, which shows the thermotolerance of A. dimorphus. Lipid content of 27 % and carbohydrate content of 26–28 % even after 24 h of heat stress at 45 and 50 °C suggest A. dimorphus as a potential feedstock for biofuel production.  相似文献   
59.

Key message

This review gives a comprehensive overview of adaptations of mangrove root system to the adverse environmental conditions and summarizes the ecological importance of mangrove root to the ecosystem.

Abstract

In plants, the first line of defense against abiotic stress is in their roots. If the soil surrounding the plant root is healthy and biologically diverse, the plant will have a higher chance to survive in stressful conditions. Different plant species have unique adaptations when exposed to a variety of abiotic stress conditions. None of the responses are identical, even though plants have become adapted to the exact same environment. Mangrove plants have developed complex morphological, anatomical, physiological, and molecular adaptations allowing survival and success in their high-stress habitat. This review briefly depicts adaptive strategies of mangrove roots with respect to anatomy, physiology, biochemistry and also the major advances recently made at the genetic and genomic levels. Results drawn from the different studies on mangrove roots have further indicated that specific patterns of gene expression might contribute to adaptive evolution of mangroves under high salinity. We also review crucial ecological contributions provided by mangrove root communities to the ecosystem including marine fauna.
  相似文献   
60.
Grace CR  Cervini L  Gulyas J  Rivier J  Riek R 《Biopolymers》2007,87(2-3):196-205
The C-terminally amidated CRF antagonist astressin binds to CRF-R1 or CRF-R2 receptors with low nanomolar affinity while the corresponding astressin-acid has >100 times less affinity. To understand the role of the amide group in binding, the conformations of astressin-amide and astressin-acid were studied in DMSO using NMR techniques. The 3D NMR structures show that the backbones of both analogs prefer an alpha-helical conformation, with a small kink around Gln(26). However, astressin-amide has a well-defined helical structure from Leu(27) to Ile(41) and a conformation very similar to the bioactive conformation reported by our group (Grace et al., Proc Natl Acad Sci USA 2007, 104, 4858-4863). In contrast, astressin-acid has an irregular helical conformation from Arg(35) onward, including a rearrangement of the side chains in that region. This structural difference highlights the crucial role of the C-terminal amidation for stabilization of astressin's bioactive conformation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号