全文获取类型
收费全文 | 1195篇 |
免费 | 54篇 |
国内免费 | 1篇 |
专业分类
1250篇 |
出版年
2024年 | 1篇 |
2023年 | 8篇 |
2022年 | 37篇 |
2021年 | 39篇 |
2020年 | 28篇 |
2019年 | 31篇 |
2018年 | 42篇 |
2017年 | 31篇 |
2016年 | 51篇 |
2015年 | 69篇 |
2014年 | 74篇 |
2013年 | 106篇 |
2012年 | 151篇 |
2011年 | 118篇 |
2010年 | 78篇 |
2009年 | 47篇 |
2008年 | 56篇 |
2007年 | 64篇 |
2006年 | 48篇 |
2005年 | 47篇 |
2004年 | 37篇 |
2003年 | 32篇 |
2002年 | 22篇 |
2001年 | 4篇 |
2000年 | 2篇 |
1999年 | 2篇 |
1998年 | 6篇 |
1997年 | 7篇 |
1996年 | 4篇 |
1995年 | 3篇 |
1993年 | 3篇 |
1992年 | 1篇 |
1991年 | 1篇 |
排序方式: 共有1250条查询结果,搜索用时 0 毫秒
61.
报道和描述了一件平额象左侧M3化石.新材料产自Nangal村附近火山灰层之下的泥岩层,该火山灰是出露于查谟-克什米尔桑巴地区Barakhetar上西瓦立克亚群Nagrota组中年龄为2.48 Ma的火山灰层的延伸.根据齿板数,臼齿长和宽,齿冠长、宽和高,釉质和齿质厚度,齿板长和宽,齿脊频率,冠高指数以及白垩质厚度等齿冠形态参数,暂时将之归为Elephas cf.E.planifrons.新材料的发现将该种的分布上限从2.6 Ma提高到2.48 Ma. 相似文献
62.
DNA-PK phosphorylates histone H2AX during apoptotic DNA fragmentation in mammalian cells 总被引:6,自引:0,他引:6
Mukherjee B Kessinger C Kobayashi J Chen BP Chen DJ Chatterjee A Burma S 《DNA Repair》2006,5(5):575-590
The phosphorylation of histone H2AX at serine 139 is one of the earliest responses of mammalian cells to ionizing radiation-induced DNA breaks. DNA breaks are also generated during the terminal stages of apoptosis when chromosomal DNA is cleaved into oligonucleosomal pieces. Apoptotic DNA fragmentation and the consequent chromatin condensation are important for efficient clearing of genomic DNA and nucleosomes and for protecting the organism from auto-immmunization and oncogenic transformation. In this study, we demonstrate that H2AX is phosphorylated during apoptotic DNA fragmentation in mouse, Chinese hamster ovary, and human cells. We have previously shown that ataxia telangiectasia mutated kinase (ATM) is primarily responsible for H2AX phosphorylation in murine cells in response to ionizing radiation. Interestingly, we find here that DNA-dependent protein kinase (DNA-PK) is solely responsible for H2AX phosphorylation during apoptosis while ATM is dispensable for the process. Moreover, the kinase activity of DNA-PKcs (catalytic subunit of DNA-PK) is specifically required for the induction of gammaH2AX. We further show that DNA-PKcs is robustly activated in apoptotic cells, as evidenced by autophosphorylation at serine 2056, before it is inactivated by cleavage. In contrast, ATM is degraded well before DNA fragmentation and gammaH2AX induction resulting in the predominance of DNA-PK during the later stages of apoptosis. Finally, we show that DNA-PKcs autophosphorylation and gammaH2AX induction occur only in apoptotic nuclei with characteristic chromatin condensation but not in non-apoptotic nuclei from the same culture establishing the most direct link between DNA fragmentation, DNA-PKcs activation, and H2AX phosphorylation. It is well established that DNA-PK is inactivated by cleavage late in apoptosis in order to forestall DNA repair. Our results demonstrate, for the first time, that DNA-PK is actually activated in late apoptotic cells and is able to initiate an early step in the DNA-damage response, namely H2AX phosphorylation, before it is inactivated by proteolysis. 相似文献
63.
64.
Aadithya Arumugam Zhiping Weng Sarang S. Talwelkar Sandeep C. Chaudhary Levy Kopelovich Craig A. Elmets Farrukh Afaq Mohammad Athar 《PloS one》2013,8(11)
Non-melanoma skin cancer (NMSC) is the most common type of skin cancer in Caucasian populations. Its increasing incidence has been a major public health concern. Elevated expressions of ODC and COX-2 are associated with both murine and human NMSCs. Inhibition of these molecular targets singly employing their respective small molecule inhibitors showed limited success. Here, we show that combined blockade of ODC and COX-2 using their potent inhibitors, DFMO and diclofenac respectively abrogates growth of A431 epidermal xenograft tumors in nu/nu mice by more than 90%. The tumor growth inhibition was associated with a diminution in the proliferation and enhancement in apoptosis. The proliferation markers such as PCNA and cyclin D1 were reduced. TUNEL-positive apoptotic cells and cleaved caspase-3 were increased in the residual tumors. These agents also manifested direct target-unrelated effects. Reduced expression of phosphorylated MAPKAP-2, ERK, and Akt (ser473 & thr308) were noticed. The mechanism by which combined inhibition of ODC/COX attenuated tumor growth and invasion involved reduction in EMT. Akt activation by ODC+COX-2 over-expression was the key player in this regard as Akt inhibition manifested effects similar to those observed by the combined inhibition of ODC+COX-2 whereas forced over-expression of Akt resisted against DFMO+diclofenac treatment. These data suggest that ODC+COX-2 over-expression together leads to pathogenesis of aggressive and invasive cutaneous carcinomas by activating Akt signaling pathway, which through augmenting EMT contributes to tumor invasion. 相似文献
65.
66.
We present a high-throughput optogenetic illumination system capable of simultaneous closed-loop light delivery to specified targets in populations of moving Caenorhabditis elegans. The instrument addresses three technical challenges: It delivers targeted illumination to specified regions of the animal’s body such as its head or tail; it automatically delivers stimuli triggered upon the animal’s behavior; and it achieves high throughput by targeting many animals simultaneously. The instrument was used to optogenetically probe the animal’s behavioral response to competing mechanosensory stimuli in the the anterior and posterior gentle touch receptor neurons. Responses to more than 43,418 stimulus events from a range of anterior–posterior intensity combinations were measured. The animal’s probability of sprinting forward in response to a mechanosensory stimulus depended on both the anterior and posterior stimulation intensity, while the probability of reversing depended primarily on the anterior stimulation intensity. We also probed the animal’s response to mechanosensory stimulation during the onset of turning, a relatively rare behavioral event, by delivering stimuli automatically when the animal began to turn. Using this closed-loop approach, over 9,700 stimulus events were delivered during turning onset at a rate of 9.2 events per worm hour, a greater than 25-fold increase in throughput compared to previous investigations. These measurements validate with greater statistical power previous findings that turning acts to gate mechanosensory evoked reversals. Compared to previous approaches, the current system offers targeted optogenetic stimulation to specific body regions or behaviors with many fold increases in throughput to better constrain quantitative models of sensorimotor processing.This study resents a new targeted illumination method for the nematode Caenorhabditis elegans, allowing delivery of optogenetic stimulation to specific body parts of many animals at once, automatically triggered by the animals’ behavior. 相似文献
67.
68.
69.
Sandeep Kumar Vashist Chandra Kumar Dixit 《Biochemical and biophysical research communications》2011,(2):455
We report here substantial interference from N-hydroxysuccinimide (NHS) in the bicinchoninic acid (BCA) protein assay. NHS is one of the most commonly used crosslinking agents in bioanalytical sciences, which can lead to serious potential errors in the BCA protein assay based protein estimation if it is present in the protein analyte solution. It was identified to be a reducing substance, which interferes with the BCA protein assay by reducing Cu2+ in the BCA working reagent. The absorbance peak and absorbance signal of NHS were very similar to those of bovine serum albumin (BSA), thereby indicating a similar BCA reaction mechanism for NHS and protein. However, the combined absorbance of NHS and BSA was not additive. The time–response measurements of the BCA protein assay showed consistent single-phase kinetics for NHS and gradually decreasing kinetics for BSA. The error in protein estimation due to the presence of NHS was counteracted effectively by plotting additional BCA standard curve for BSA with a fixed concentration of NHS. The difference between the absorbance values of BSA and BSA with a fixed NHS concentration provided the absorbance contributed by NHS, which was then subtracted from the total absorbance of analyte sample to determine the actual absorbance of protein in the analyte sample. 相似文献
70.
Harpreet Kaur Ajay Jajodia Sandeep Grover Ruchi Baghel Meenal Gupta Sanjeev Jain Ritushree Kukreti 《PloS one》2014,9(7)
Literature suggests that disease severity and neurotransmitter signaling pathway genes can accurately identify antipsychotic response in schizophrenia patients. However, putative role of signaling molecules has not been tested in schizophrenia patients based on severity of illness, despite its biological plausibility. In the present study we investigated the possible association of polymorphisms from five candidate genes RGS4, SLC6A3, PIP4K2A, BDNF, PI4KA with response to antipsychotic in variably ill schizophrenia patients. Thus in present study, a total 53 SNPs on the basis of previous reports and functional grounds were examined for their association with antipsychotic response in 423 schizophrenia patients segregated into low and high severity groups. Additionally, haplotype, diplotype, multivariate logistic regression and multifactor-dimensionality reduction (MDR) analyses were performed. Furthermore, observed associations were investigated in atypical monotherapy (n = 355) and risperidone (n = 260) treated subgroups. All associations were estimated as odds ratio (OR) and 95% confidence interval (CI) and test for multiple corrections was applied. Single locus analysis showed significant association of nine variants from SLC6A3, PIP4K2A and BDNF genes with incomplete antipsychotic response in schizophrenia patients with high severity. We identified significant association of six marker diplotype ATTGCT/ATTGCT (rs746203-rs10828317-rs7094131-rs2296624-rs11013052-rs1409396) of PIP4K2A gene in incomplete responders (corrected p-value = 0.001; adjusted-OR = 3.19, 95%-CI = 1.46–6.98) with high severity. These associations were further observed in atypical monotherapy and risperidone sub-groups. MDR approach identified gene-gene interaction among BDNF_rs7103411-BDNF_rs1491851-SLC6A3_rs40184 in severely ill incomplete responders (OR = 7.91, 95%-CI = 4.08–15.36). While RGS4_rs2842026-SLC6A3_rs2975226 interacted synergistically in incomplete responders with low severity (OR = 4.09, 95%-CI = 2.09–8.02). Our findings provide strong evidence that diplotype ATTGCT/ATTGCT of PIP4K2A gene conferred approximately three-times higher incomplete responsiveness towards antipsychotics in severely ill patients. These results are consistent with the known role of phosphatidyl-inositol-signaling elements in antipsychotic action and outcome. Findings have implication for future molecular genetic studies as well as personalized medicine. However more work is warranted to elucidate underlying causal biological pathway. 相似文献