首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2621篇
  免费   124篇
  国内免费   1篇
  2746篇
  2023年   14篇
  2022年   44篇
  2021年   56篇
  2020年   43篇
  2019年   47篇
  2018年   64篇
  2017年   57篇
  2016年   76篇
  2015年   107篇
  2014年   124篇
  2013年   173篇
  2012年   238篇
  2011年   189篇
  2010年   130篇
  2009年   79篇
  2008年   112篇
  2007年   122篇
  2006年   107篇
  2005年   95篇
  2004年   72篇
  2003年   70篇
  2002年   58篇
  2001年   51篇
  2000年   41篇
  1999年   42篇
  1998年   23篇
  1997年   24篇
  1996年   17篇
  1995年   21篇
  1994年   18篇
  1993年   13篇
  1992年   26篇
  1991年   39篇
  1990年   34篇
  1989年   29篇
  1988年   31篇
  1987年   26篇
  1986年   15篇
  1985年   12篇
  1984年   12篇
  1983年   12篇
  1981年   12篇
  1979年   19篇
  1978年   12篇
  1974年   9篇
  1973年   15篇
  1972年   11篇
  1971年   15篇
  1970年   13篇
  1969年   14篇
排序方式: 共有2746条查询结果,搜索用时 15 毫秒
991.
In the present study effect of dietary restriction (DR) on neuronal plasticity markers neural cell adhesion molecule (NCAM) and its polysialylated form PSA-NCAM and astrocytic marker glial fibrillary acidic protein (GFAP) was assessed following brain injury by intraperitoneal injection of kainic acid or physiological saline in adult male wistar rats. After 7-day recovery period, rats were sacrificed to study the NCAM-ir, PSA-NCAM-ir, and GFAP-ir in all the groups with immunohistofluorescence and immunoblotting. We noticed increase in NCAM and PSA-NCAM expression after KA excitotoxicity, and DR enhanced this increase in NCAM and PSA-NCAM expression. A marked increase in NCAM and PSA-NCAM-ir was observed in CA3 region of hippocampus, subgranular region and hilus of dentate gyrus, hypothalamus, and piriform cortex in both vehicle treated as well KA-treated DR rats as compared to vehicle and KA-treated AL rats, respectively. Whenever, CNS is damaged it undergoes an injury response called reactive gliosis. Our study confirmed the neuroprotective role of DR as evident from attenuation of GFAP-ir and enhanced levels of neuronal plasticity markers NCAM and PSA-NCAM. The potential beneficial role of DR regimen in attenuating KA-induced reactive astrogliosis and enhancing expression of neuronal plasticity markers may point the way to new strategies of intervention therapy by DR that will facilitate recovery from ageing and disease related neuronal dysfunction and enhance restorative processes by modulating astrogliosis.  相似文献   
992.
Plasmodium falciparum sirtuin, PfSir2, contains histone deacetylase (HDAC) activity that may be central to the regulation of virulence gene expression in the parasites. Although a few reports have been published recently regarding in vitro and in vivo function of PfSir2, expression of the endogenous protein (c. 30 kDa) has not been shown yet. Here we report the presence of PfSir2 in the parasite at the protein level by specific antibodies. HDAC activity of PfSir2 can be inhibited by nicotinamide, a product of sirtuin reaction. Surprisingly, we find that nicotinamide also delays parasite growth significantly in culture. These findings further our knowledge on PfSir2 and raise the possibility of using an inexpensive agent like nicotinamide as an antimalarial in combination with other antiparasitic drugs.  相似文献   
993.
Obesity is associated with oxidative stress. Endurance training (ET) in healthy individuals increases antioxidant enzyme activity and decreases oxidative stress, whereas its effects on oxidative status in obese humans have yet to be determined. We investigated the effects of obesity and ET on markers of oxidative stress, antioxidant defense, and inflammation. Obese (n=12) and lean (n=12) women underwent 12 weeks of ET with blood, 24-h urine, and muscle biopsies collected prior to and following training for determination of oxidative stress (urinary 8-hydroxy-2-deoxyguanosine and 8-isoprostanes, muscle protein carbonyls, and 4-hydroxynonenal), antioxidant enzyme protein content (muscle CuZnSOD, MnSOD, and catalase), and inflammation (C-reactive protein, leptin, adiponectin, interleukin-6). Obese women had elevated urinary 8-hydroxy-2-deoxyguanosine (P=0.03), muscle protein carbonyls (P=0.03), and 4-hydroxynonenal (P<0.001); serum C-reactive protein (P=0.01); and plasma leptin (P=0.0001) and interleukin-6 (P=0.03). ET decreased urinary 8-hydroxy-2-deoxyguanosine (P=0.006) and 8-isoprostanes (P=0.02) in all subjects and CuZnSOD protein content (P=0.04) in obese women, in the absence of changes in body weight or composition. ET without weight loss decreases systemic oxidative stress, but not markers of inflammation, in obese women.  相似文献   
994.
Human embryonic stem cell (hESC) lines are traditionally derived and maintained on mouse embryonic fibroblasts (MEF) which are xenogeneic and enter senescence rapidly. In view of the clinical implications of hESCs, the use of human fibroblast as feeders has been suggested as a plausible alternative. However, use of fibroblast cells from varying sources leads to culture variations along with the need to add FGF2 in cultures to sustain ES cell pluripotency. In this study we report the derivation of FGF2 expressing germ layer derived fibroblast cells (GLDF) from hESC lines. These feeders could support the pluripotency, karyotypes and proliferation of hESCs with or without FGF2 in prolonged cultures as efficiently as that on MEF. GLDF cells were derived from embryoid bodies and characterized for expression of fibroblast markers by RT-PCR, Immunofluorescence and by flow cytometry for CD marker expression. The expression and secretion of FGF2 was confirmed by RT-PCR, Western blot, and ELISA. The hESC lines cultured on MEF and GLDF were analyzed for various stemness markers. These feeder cells with fibroblast cells like properties maintained the properties of hESCs in prolonged culture over 30 passages. Proliferation and pluripotency of hESCs on GLDF was comparable to that on mouse feeders. Further we discovered that these GLDF cells could secrete FGF2 and maintained pluripotency of hESC cultures even in the absence of supplemental FGF2. To our knowledge, this is the first study reporting a novel hESC culture system which does not warrant FGF2 supplementation, thereby reducing the cost of hESC cultures.  相似文献   
995.
Cationic peptide antibiotics (CPAs) are known to possess amphiphilic structure, by virtue of which they display lytic activity against bacterial cell membranes. Naturally occurring antimicrobial peptides contain a large number of amino acid residues, which limits their clinical applicability. Recent studies indicate that it is possible to decrease the chain-length of these peptides without loss of activity, and suggest that a minimum of two positive ionizable (hydrophilic) and two bulky groups (hydrophobic) are required for antimicrobial activity. By employing the HipHop module of the software package CATALYST, we have translated these experimental findings into 3-D pharmacophore models by finding common features among active peptides. Positively ionizable (PI) and hydrophobic (HYD) features are the important characteristics of compounds used for pharmacophore model development. Based on the highest score and the presence of amphiphilic structure, two separate hypothesis, Ec-2 and Sa-6 for Escherichia coli and Staphylococcus aureus, respectively, were selected for mapping analysis of active and inactive peptides against these organisms. The resulting models not only provided information on the minimum requirement of PI and HYD features but also indicated the importance of their relative arrangement in space. The minimum requirement for PI features was two in both cases but the number of HYD features required in the case of E. coli was four while for S. aureus it was found to be three. These hypotheses were able to differentiate between active and inactive CPAs against both organisms and were able to explain the experimental results. The hypotheses were further validated using cationic steroid antibiotics (CSAs), a different class of facial amphiphiles with same mechanism of antimicrobial action as that of CPAs. The results showed that CSAs also require similar minimum features to be active against both E. coli and S. aureus. These studies also indicate that the minimum feature requirements may be conserved for different strains of the same organism. Figure shows the mapping of an active cationic peptide antibiotic (CPA) mapped to the most acceptable hypothesis Sa6 against S. aureus  相似文献   
996.

Background

Counties are the smallest unit for which mortality data are routinely available, allowing consistent and comparable long-term analysis of trends in health disparities. Average life expectancy has steadily increased in the United States but there is limited information on long-term mortality trends in the US counties This study aimed to investigate trends in county mortality and cross-county mortality disparities, including the contributions of specific diseases to county level mortality trends.

Methods and Findings

We used mortality statistics (from the National Center for Health Statistics [NCHS]) and population (from the US Census) to estimate sex-specific life expectancy for US counties for every year between 1961 and 1999. Data for analyses in subsequent years were not provided to us by the NCHS. We calculated different metrics of cross-county mortality disparity, and also grouped counties on the basis of whether their mortality changed favorably or unfavorably relative to the national average. We estimated the probability of death from specific diseases for counties with above- or below-average mortality performance. We simulated the effect of cross-county migration on each county''s life expectancy using a time-based simulation model. Between 1961 and 1999, the standard deviation (SD) of life expectancy across US counties was at its lowest in 1983, at 1.9 and 1.4 y for men and women, respectively. Cross-county life expectancy SD increased to 2.3 and 1.7 y in 1999. Between 1961 and 1983 no counties had a statistically significant increase in mortality; the major cause of mortality decline for both sexes was reduction in cardiovascular mortality. From 1983 to 1999, life expectancy declined significantly in 11 counties for men (by 1.3 y) and in 180 counties for women (by 1.3 y); another 48 (men) and 783 (women) counties had nonsignificant life expectancy decline. Life expectancy decline in both sexes was caused by increased mortality from lung cancer, chronic obstructive pulmonary disease (COPD), diabetes, and a range of other noncommunicable diseases, which were no longer compensated for by the decline in cardiovascular mortality. Higher HIV/AIDS and homicide deaths also contributed substantially to life expectancy decline for men, but not for women. Alternative specifications of the effects of migration showed that the rise in cross-county life expectancy SD was unlikely to be caused by migration.

Conclusions

There was a steady increase in mortality inequality across the US counties between 1983 and 1999, resulting from stagnation or increase in mortality among the worst-off segment of the population. Female mortality increased in a large number of counties, primarily because of chronic diseases related to smoking, overweight and obesity, and high blood pressure.  相似文献   
997.

Introduction

Periodontitis is a chronic, non-reversible inflammatory disease of the oral cavity leading to destruction of periodontal tissues. Thus, the estimation of bacterial metabolite, tissue damage and secretory metabolites of the triggered inflammatory cells likely to yield results. It may be of value for understanding the pathophysiology of the disease by metabolic profiling of saliva samples using high-resolution NMR spectroscopy.

Objective

The study will evaluate the difference in salivary metabolites in healthy and periodontal condition along with fetching of possible biomarkers in case of chronic periodontitis.

Methods

1H- NMR spectroscopy has been employed in 114 saliva samples in search of distinctive differences and spectral data were further subjected to multivariate analysis.

Result

One-hundred metabolites were characterised and assigned in the 1H NMR spectra of saliva. The statistical analysis of control (Healthy subjects) and diseased (Periodontal subjects) using PLS-DA model resulted in R2 of 0.84 and Q2 of 0.79. There was an elevation in the concentration of statistically discriminant metabolites. The twenty newly identified metabolites in saliva indicates bacterial population shift along with change in homeostasis. These disturbs the biofilm, a real protector against any possible bio-damage on tooth surface. These newly identified metabolites could define better geographically diversified periodontal condition.

Conclusion

Analysis clearly differentiates healthy subjects from the diseased ones. Few newly identified metabolites along with the pool of metabolites may serve as biomarkers for distinguishing the severity and complexity of periodontitis.
  相似文献   
998.
999.
Potential long-term health effects from tobacco products can be estimated by measuring changes in biochemical indicators of disease mechanisms like inflammation. This study assesses the potential relationships between biomarkers of potential harm (BOPH) and biomarkers of cigarette smoke exposure (BOE) based on data from the NHANES (2007–2012, n?=?17,293 respondents). Statistically significant relationships were observed between white blood cells (WBC) and high-density lipoprotein (HDL) and BOE; between WBC and high-sensitivity C-reactive protein and smoking status; and between WBC and HDL and smoking intensity. This analysis suggests that WBC and HDL are useful BOPH in studies assessing the health risks of cigarette smoking.  相似文献   
1000.
Autophagy is a catabolic process involved in the continuous removal of toxic protein aggregates and cellular organelles to maintain the homeostasis and functional integrity of cells. The mechanistic understanding of autophagy mediated neuroprotection during the development of neurodegenerative disorders remains elusive. Here, we investigated the potential role of rapamycin-induced activation of autophagy and PI3K/Akt1/mTOR/CREB pathway(s) in the neuroprotection of amyloid-beta (Aβ1-42)-insulted hippocampal neurons in rat model of Alzheimer’s disease (AD) like phenotypes. A single intra-hippocampal injection of Aβ1-42 impaired redox balance and markedly induced synaptic dysfunction, neurotransmission dysfunction, and cognitive deficit, and suppressed pro-survival signaling in the adult rats. Rapamycin administration caused a significant reduction of mTOR complex 1 phosphorylation at Ser2481 and a significant increase in levels of autophagy markers such as microtubule-associated protein-1 light chain-3 (LC3), beclin-1, sequestosome-1/p62, unc-51-like kinase 1 (ULK1). In addition, rapamycin induced the activation of autophagy that further activated p-PI3K, p-Akt1 (Ser473), and p-CREB (Ser183) expression in Aβ1-42-treated rats. The activated autophagy markedly reversed Aβ1-42-induced impaired redox homeostasis by decreasing the levels of prooxidants—ROS generation, intracellular Ca2+ flux and LPO, and increasing the levels of antioxidants—SOD, catalase, and GSH. The activated autophagy also provided significant neuroprotection against Aβ1-42-induced synaptic dysfunction by increasing the expression of synapsin-I, synaptophysin, and PSD95; and neurotransmission dysfunction by increasing the levels of CHRM2, DAD2 receptor, NMDA receptor, and AMPA receptor; and ultimately improved cognitive ability in rats. Wortmannin administration significantly reduced the expression of autophagy markers, p-PI3K, p-Akt1, and p-CREB, as well as the autophagy mediated neuroprotective effect. Our study demonstrate that autophagy can be an integrated part of pro-survival (PI3K/Akt1/mTOR/CREB) signaling and autophagic activation restores the oxidative defense mechanism(s), neurodegenerative damages, and maintains the integrity of synapse and neurotransmission in rat model of AD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号