首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1174篇
  免费   53篇
  国内免费   1篇
  2023年   8篇
  2022年   29篇
  2021年   36篇
  2020年   29篇
  2019年   30篇
  2018年   41篇
  2017年   30篇
  2016年   52篇
  2015年   68篇
  2014年   74篇
  2013年   105篇
  2012年   146篇
  2011年   118篇
  2010年   78篇
  2009年   46篇
  2008年   54篇
  2007年   61篇
  2006年   50篇
  2005年   46篇
  2004年   36篇
  2003年   32篇
  2002年   22篇
  2001年   5篇
  2000年   3篇
  1999年   2篇
  1998年   6篇
  1997年   7篇
  1996年   4篇
  1995年   3篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1985年   1篇
排序方式: 共有1228条查询结果,搜索用时 421 毫秒
991.
Omega-3-fatty acid DHA is a structural component of brain plasma membranes, thereby crucial for neuronal signaling; however, the brain is inefficient at synthesizing DHA. We have asked how levels of dietary n-3 fatty acids during brain growth would affect brain function and plasticity during adult life. Pregnant rats and their male offspring were fed an n-3 adequate diet or n-3 deficient diets for 15 weeks. Results showed that the n-3 deficiency increased parameters of anxiety-like behavior using open field and elevated plus maze tests in the male offspring. Behavioral changes were accompanied by a level reduction in the anxiolytic-related neuropeptide Y-1 receptor, and an increase in the anxiogenic-related glucocorticoid receptor in the cognitive related frontal cortex, hypothalamus and hippocampus. The n-3 deficiency reduced brain levels of docosahexaenoic acid (DHA) and increased the ratio n-6/n-3 assessed by gas chromatography. The n-3 deficiency reduced the levels of BDNF and signaling through the BDNF receptor TrkB, in proportion to brain DHA levels, and reduced the activation of the BDNF-related signaling molecule CREB in selected brain regions. The n-3 deficiency also disrupted the insulin signaling pathways as evidenced by changes in insulin receptor (IR) and insulin receptor substrate (IRS). DHA deficiency during brain maturation reduces plasticity and compromises brain function in adulthood. Adequate levels of dietary DHA seem crucial for building long-term neuronal resilience for optimal brain performance and aiding in the battle against neurological disorders.  相似文献   
992.
Computational methods are increasingly gaining importance as an aid in identifying active sites. Mostly these methods tend to have structural information that supplement sequence conservation based analyses. Development of tools that compute electrostatic potentials has further improved our ability to better characterize the active site residues in proteins. We have described a computational methodology for detecting active sites based on structural and electrostatic conformity - CataLytic Active Site Prediction (CLASP). In our pipelined model, physical 3D signature of any particular enzymatic function as defined by its active sites is used to obtain spatially congruent matches. While previous work has revealed that catalytic residues have large pKa deviations from standard values, we show that for a given enzymatic activity, electrostatic potential difference (PD) between analogous residue pairs in an active site taken from different proteins of the same family are similar. False positives in spatially congruent matches are further pruned by PD analysis where cognate pairs with large deviations are rejected. We first present the results of active site prediction by CLASP for two enzymatic activities - β-lactamases and serine proteases, two of the most extensively investigated enzymes. The results of CLASP analysis on motifs extracted from Catalytic Site Atlas (CSA) are also presented in order to demonstrate its ability to accurately classify any protein, putative or otherwise, with known structure. The source code and database is made available at www.sanchak.com/clasp/. Subsequently, we probed alkaline phosphatases (AP), one of the well known promiscuous enzymes, for additional activities. Such a search has led us to predict a hitherto unknown function of shrimp alkaline phosphatase (SAP), where the protein acts as a protease. Finally, we present experimental evidence of the prediction by CLASP by showing that SAP indeed has protease activity in vitro.  相似文献   
993.
Nucleoside diphosphate kinases (NDK) are characterized by high catalytic turnover rates and diverse substrate specificity. These features make this enzyme an effective activator of a pro-drug-an application that has been actively pursued for a variety of therapeutic strategies. The catalytic mechanism of this enzyme is governed by a conserved histidine that coordinates a magnesium ion at the active site. Despite substantial structural and biochemical information on NDK, the mechanistic feature of the phospho-transfer that leads to auto-phosphorylation remains unclear. While the role of the histidine residue is well documented, the other active site residues, in particular the conserved serine remains poorly characterized. Studies on some homologues suggest no role for the serine residue at the active site, while others suggest a crucial role for this serine in the regulation and quaternary association of this enzyme in some species. Here we report the biochemical features of the Staphylococcus aureus NDK and the mutant enzymes. We also describe the crystal structures of the apo-NDK, as a transition state mimic with vanadate and in complex with different nucleotide substrates. These structures formed the basis for molecular dynamics simulations to understand the broad substrate specificity of this enzyme and the role of active site residues in the phospho-transfer mechanism and oligomerization. Put together, these data suggest that concerted changes in the conformation of specific residues facilitate the stabilization of nucleotide complexes thereby enabling the steps involved in the ping-pong reaction mechanism without large changes to the overall structure of this enzyme.  相似文献   
994.
Transport of riboflavin (RF) across both the brush border membrane (BBM) and basolateral membrane (BLM) of the polarized enterocyte occurs via specific carrier-mediated mechanisms. Although, three human riboflavin transporters (hRFTs), i.e., hRFT-1, hRFT-2 and hRFT-3 are expressed in the intestine, little is known about the cell surface domain(s) at which these specific hRFTs are expressed. Here, we used live cell confocal imaging of intestinal epithelial Caco-2 and renal MDCK cells to show that the hRFT-1 is mainly expressed at the BLM, hRFT-2 is exclusively expressed at the apical membrane, while hRFT-3 is mostly localized inside intracellular vesicular structures (with some expression at the BLM). Further the level of hRFT-2 mRNA expression in Caco-2 cells and in native human intestine is significantly higher than that of hRFT-1 and -3; hRFT-2 was also more efficient in transporting 3H-RF than hRFT-1 and -3. These findings implied an important role for hRFT-2 in intestinal RF uptake, a conclusion that was further supported by findings of hRFT-2 gene-specific siRNA knockdown investigation. These results show that members of the hRFT family are differentially expressed in polarized epithelia, and that the apically expressed hRFT-2 plays a key role in intestinal RF accumulation.  相似文献   
995.
A number of studies have implicated tumor-induced Treg cell activity in the sub-optimal response to therapeutic vaccines. Development of neo-adjuvant strategies targeting Treg cells is therefore imperative. Scutellaria extracts or constituent flavonoids have shown encouraging efficacy against various tumors, including gliomas, in both pre-clinical and clinical studies. We report here, for the first time, that Scutellaria ocmulgee leaf extract (SocL) and flavonoid wogonin could inhibit TGF-β1-induced Treg activity in malignant gliomas. F344 rats, subcutaneously transplanted with F98 gliomas, were treated with SocL. There was a significant inhibition of intra-tumoral TGF-β1 and Treg cell frequency as well as peripheral blood TGF-β1 levels in SocL-treated animals compared to the controls. SocL extract and wogonin also inhibited glioma-induced, TGF-β1-mediated Treg activity in vitro. SocL extract and wogonin also inhibited the secretion of IL-10 in Treg culture; whereas the level of IL-2 was either unchanged or marginally enhanced. We also observed an inhibition of Smad-3, GSK-3β and ERK1/2 signaling by SocL and wogonin in Treg cells, while phosphorylation of P38 MAPK was considerably enhanced, indicating that SocL or wogonin could inhibit the T cells’ response to TGF-β1 via modulation of both Smad and non-Smad signaling pathways. Overall, this study suggests that Scutellaria can potentially reverse tumor-mediated immune suppression via inhibition of TGF-β1 secretion as well as via inhibition of T cells’ response to TGF-β1. This may provide an opportunity for developing a novel adjuvant therapeutic strategy for malignant gliomas, combining Scutellaria with immunotherapy and chemo/radio-therapeutic regimen, which could potentially improve the disease outcome.  相似文献   
996.

BACKGROUND:

We report on the higher prevalence of deaf-mutes from a village in Jammu and Kashmir State of India.

MATERIALS AND METHODS:

A cross-sectional study among 79 deaf mutes using pedigree analysis, audiometry, imaging and molecular analysis.

RESULTS:

A high rate of hereditary deafness with 79 individuals diagnosed to be suffering from non-syndrome deafness in a total population of 2452 individuals residing in the village.

INTERPRETATION:

Flourishing of intermarriages led to a population with high prevalence of deafness  相似文献   
997.
MicroRNAs are small (20-22 nucleotides) none coding, regulatory RNAs, whose pivotal role in gene expression has been associated in number of diseases, therefore prediction of miRNA is an essential yet challenging field. In this study miRNAs of C. roseus are predicted along with their possible target genes. A total of 19,899 ESTs were downloaded from dbEST database and processed and trimmed through SeqClean. Nine sequences were trashed and 31 sequences were trimmed by the program and the resulting sequences were submitted to Repeatmasker and TGICL for clustering and assembly. This contig database was now used to find the putative miRNAs by performing a local BLAST with the miRNAs of B. rapa retrieved from miRBase. The targets were scanned by hybridizing screened ESTs with the UTRs of human using miRanda software. Finally, 7 putative miRNAs were found to hybridize with the various targets of signal transduction and apoptosis that may play significant role in preventing diseases like Leukemia, Arthritis and Alzheimer.  相似文献   
998.
999.
The consumption of foods containing resveratrol produces significant health benefits. Resveratrol inhibits cancer by reducing cell proliferation and metastasis and by inducing apoptosis. These actions could be explained by its ability to inhibit (ERK-1/2), Akt and suppressing the levels of estrogen and insulin growth factor -1 (IGF-1) receptor. How these processes are manifested into the antitumor actions of resveratrol is not clear. Using microarray studies, we show that resveratrol reduced the expression of various prostate-tumor associated microRNAs (miRs) including miR-21 in androgen-receptor negative and highly aggressive human prostate cancer cells, PC-3M-MM2. This effect of resveratrol was associated with reduced cell viability, migration and invasiveness. Additionally, resveratrol increased the expression of tumor suppressors, PDCD4 and maspin, which are negatively regulated by miR-21. Short interfering (si) RNA against PDCD4 attenuated resveratrol’s effect on prostate cancer cells, and similar effects were observed following over expression of miR-21 with pre-miR-21 oligonucleotides. PC-3M-MM2 cells also exhibited high levels of phospho-Akt (pAkt), which were reduced by both resveratrol and LY294002 (a PI3-kinase inhibitor). MiR-21 expression in these cells appeared to be dependent on Akt, as LY294002 reduced the levels of miR-21 along with a concurrent increase in PDCD4 expression. These in vitro findings were further corroborated in a severe combined immunodeficient (SCID) mouse xenograft model of prostate cancer. Oral administration of resveratrol not only inhibited the tumor growth but also decreased the incidence and number of metastatic lung lesions. These tumor- and metastatic-suppressive effects of resveratrol were associated with reduced miR-21 and pAkt, and elevated PDCD4 levels. Similar anti-tumor effects of resveratrol were observed in DU145 and LNCaP prostate cancer cells which were associated with suppression of Akt and PDCD4, but independent of miR-21.These data suggest that resveratrol’s anti-tumor actions in prostate cancer could be explained, in part, through inhibition of Akt/miR-21 signaling pathway.  相似文献   
1000.
Studies have established hyperglycemia as the most important factor in the progress of vascular complications. Formation of advanced glycation end products (AGEs) correlates with glycemic control. The AGE hypothesis proposes that hyperglycemia contributes to the pathogenesis of diabetic complications including retinopathy. However, their role in diabetic retinopathy remains largely unknown. This review discusses the chemistry of AGEs formation and their patho-biochemistry particularly in relation to diabetic retinopathy. AGEs exert deleterious effects by acting directly to induce cross-linking of long-lived proteins to promote vascular stiffness, altering vascular structure and function and interacting with receptor for AGE, to induce intracellular signaling leading to enhanced oxidative stress and elaboration of key proinflammatory and prosclerotic cytokines. Novel anti-AGE strategies are being developed hoping that in next few years, some of these promising therapies will be successfully evaluated in clinical context aiming to reduce the major economical and medical burden caused by diabetic retinopathy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号