首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1180篇
  免费   53篇
  国内免费   1篇
  1234篇
  2024年   1篇
  2023年   8篇
  2022年   34篇
  2021年   36篇
  2020年   29篇
  2019年   30篇
  2018年   41篇
  2017年   30篇
  2016年   52篇
  2015年   68篇
  2014年   74篇
  2013年   105篇
  2012年   146篇
  2011年   118篇
  2010年   78篇
  2009年   46篇
  2008年   54篇
  2007年   61篇
  2006年   50篇
  2005年   46篇
  2004年   36篇
  2003年   32篇
  2002年   22篇
  2001年   5篇
  2000年   3篇
  1999年   2篇
  1998年   6篇
  1997年   7篇
  1996年   4篇
  1995年   3篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1985年   1篇
排序方式: 共有1234条查询结果,搜索用时 0 毫秒
931.
A 25.5kDa class alpha glutathione S-transferase (GST) designated as microsomal Ya-GST or M-GSTA has been purified to electrophoretic homogeneity from human liver microsomes. Limited proteolysis, gel filtration chromatography followed by EDTA, and alkaline Na(2)CO(3) treatments of microsomes indicate that the M-GSTA is intrinsic to the microsomes. Western immunoblot analysis revealed that human liver M-GSTA and the previously reported 17-kDa microsomal GST (FEBS Lett. 315 (1993) 77) did not have immunological cross reactivity. The enzyme showed conjugation activity towards substrates like 1-chloro-2,4-nitrobenzene (CDNB) and 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, and 4-hydroxy-2-nonenal (4-HNE), a genotoxic alpha,beta-unsaturated aldehyde product of lipid peroxidation. In addition, the M-GSTA exhibited significant glutathione peroxidase activity towards physiologically relevant fatty acid hydroperoxides as well as phosphatidylcholine hydroperoxide, but not with H(2)O(2). C-terminal amino acid sequence analysis revealed a high homology with the human liver cytosolic GST-A1 and A3 isozymes. Western immunoblot analyses of the microsomes prepared from human hepatoblastoma (HepG2) showed that the expression of this M-GSTA was induced upon treatment with such prooxidants as H(2)O(2), suggesting that it may play an important role in the protection of cellular membranes from peroxidative damage.  相似文献   
932.
Commercial enzymes, creatininase (CA) from Pseudomonas sp, creatinase (CI) from Pseudomonas sp, sarcosine oxidase (SO) from Bacillus sp were co-immobilized onto iron oxide nanoparticles/chitosan-graft-polyaniline (Fe(3)O(4)-NPs/CHIT-g-PANI) composite film electrodeposited on surface of Pt electrode through glutaraldehyde coupling. Transmission electron microscopy (TEM) was used for characterization of Fe(3)O(4)-NPs. A creatinine biosensor was fabricated using Enzymes/Fe(3)O(4)-NPs/CHIT-g-PANI/Pt electrode as working electrode, Ag/AgCl as reference electrode and Pt wire as auxiliary electrode. The enzyme electrode was characterized by cyclic voltammetry (CV), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopic and electrochemical impedance spectroscopy (EIS). The biosensor exhibited an optimum response within 2s at pH 7.5 and 30 °C, when polarized at 0.4V vs Ag/AgCl. The electrocatalytic response showed a linear dependence on creatinine concentration ranging from 1 to 800 μM. The sensitivity of the biosensor was 3.9 μA μM(-1) cm(-2), with a detection limit of 1 μM (S/N=3). Apparent Michaelis-Menton (K(m)) value for creatinine was 0.17 mM. The biosensor showed only 10% loss in its initial response after 120 uses over 200 days, when stored at 4 °C. The biosensor measured creatinine in the serum of apparently healthy persons which correlated well with a standard colorimetric method (r=0.99).  相似文献   
933.

Objective

To find an inhibitor of 15-hydroxyprostaglandin dehydrogenase (15-PGDH) that rapidly metabolises Prostaglandin E2 (PGE2) as a mediator of wound healing, we examined seven flavonoids for this role.

Results

7,3′,4′-Trimethoxyflavone (TMF) had the lowest IC50 value of 0.34 µM for 15-PGDH inhibition but >400 µM for cytotoxicity, indicating a high therapeutic index. TMF elevated PGE2 levels in a concentration-dependent manner in both A549 lung cancer and HaCaT cells. It also significantly increased mRNA expression of multidrug resistance-associated protein 4 (MRP4) and of prostaglandin transporter (PGT) slightly in HaCaT cells. In addition, TMF facilitated in vitro wound healing in a HaCaT scratch model, which was completely inhibited by adding both 15-PGDH and NAD+ as cofactor, confirming the involvement of PGE2 in its wound healing effect.

Conclusion

TMF with a high therapeutic index can facilitate wound healing through PGE2 elevation by 15-PGDH inhibition.
  相似文献   
934.
The etiology of ovarian epithelial cancer is poorly understood, mainly due to the lack of an appropriate experimental model for studying the onset and progression of this disease. We have created a mutant mouse model in which aberrant estrogen receptor alpha (ERα) signaling in the hypothalamic-pituitary-ovarian axis leads to ovarian epithelial tumorigenesis. In these mice, termed ERαd/d, the ERα gene was conditionally deleted in the anterior pituitary, but remained intact in the hypothalamus and the ovary. The loss of negative-feedback regulation by estrogen (E) at the level of the pituitary led to increased production of luteinizing hormone (LH) by this tissue. Hyperstimulation of the ovarian cells by LH resulted in elevated steroidogenesis, producing high circulating levels of steroid hormones, including E. The ERαd/d mice exhibited formation of palpable ovarian epithelial tumors starting at 5 months of age with 100% penetrance. By 15 months of age, 80% of ERαd/d mice die. Besides proliferating epithelial cells, these tumors also contained an expanded population of luteinized stromal cells, which acquire the ability to express P450 aromatase and synthesize E locally. In response to the elevated levels of E, the ERα signaling was accentuated in the ovarian epithelial cells of ERαd/d mice, triggering increased ERα-dependent gene expression, abnormal cell proliferation, and tumorigenesis. Consistent with these findings, treatment of ERαd/d mice with letrozole, an aromatase inhibitor, markedly reduced circulating E and ovarian tumor volume. We have, therefore, developed a unique animal model, which serves as a useful tool for exploring the involvement of E-dependent signaling pathways in ovarian epithelial tumorigenesis.  相似文献   
935.
MET, the receptor for hepatocyte growth factor (HGF), plays an important role in signaling normal and tumor cell migration and invasion. Here, we describe a previously unrecognized mechanism that promotes MET expression in multiple tumor cell types. The levels of the Pim-1 protein kinase show a positive correlation with the levels of MET protein in human tumor cell lines and patient-derived tumor materials. Using small interfering RNA (siRNA), Pim knockout mice, small-molecule inhibitors, and overexpression of Pim-1, we confirmed this correlation and found that Pim-1 kinase activity regulates HGF-induced tumor cell migration, invasion, and cell scattering. The novel biochemical mechanism for these effects involves the ability of Pim-1 to control the translation of MET by regulating the phosphorylation of eukaryotic initiation factor 4B (eIF4B) on S406. This targeted phosphorylation is required for the binding of eIF4B to the eIF3 translation initiation complex. Importantly, Pim-1 action was validated by the evaluation of patient blood and bone marrow from a phase I clinical trial of a Pim kinase inhibitor, AZD1208. These results suggest that Pim inhibitors may have an important role in the treatment of patients where MET is driving tumor biology.  相似文献   
936.
937.
The intracellular calcium concentration ([Ca]i) regulates cell viability and contractility in myocardial cells. Elevation of the [Ca]i level occurs by entry of calcium ions (Ca2+) through voltage-dependent Ca2+ channels in the plasma membrane and release of Ca2+ from the sarcoplasmic reticulum. Calmidazolium chloride (CMZ), a subgroup II calmodulin antagonist, blocks L-type calcium channels as well as voltage-dependent Na+ and K+ channel currents. This study elaborates on the events that contribute to the cytotoxic effects of CMZ on the heart. We hypothesized that apoptotic cell death occurs in the cardiac cells through calcium accumulation, production of reactive oxygen species, and the cytochrome c-mediated PARP activation pathway. CMZ significantly increased the production of superoxide (O2•–) and nitric oxide (NO) as detected by FACS and confocal microscopy. CMZ induced mitochondrial damage by increasing the levels of intracellular calcium, lowering the mitochondrial membrane potential, and thereby inducing cytochrome c release. Apoptotic cell death was observed in H9c2 cells exposed to 25 μM CMZ for 24 h. This is the first report that elaborates on the mechanism of CMZ-induced cardiotoxicity. CMZ causes apoptosis by decreasing mitochondrial activity and contractility indices and increasing oxidative and nitrosative stress, ultimately leading to cell death via an intrinsic apoptotic pathway.  相似文献   
938.
A previously cloned coat protein (CP) gene of Grapevine leafroll-associated virus 3 (GLRaV-3) from cultivar Cabernet Souvignon was over-expressed in Escherichia coli strain BL21 expression system as ~ 43 kDa fusion protein containing polyhistidine tag (6His) at its N terminal. The protein was purified from insoluble fraction and reacted positively in western blotting with commercial anti GLRaV-3 polyclonal antiserum (Bioreba, Switzerland) and hence, used as immunogen for the production of polyclonal antisera in New Zealand white rabbits. Polyclonal antiserum specific to GLRaV-3 detected the virus by double antibody sandwich enzyme linked immunosorbent assay using commercial alkaline phosphatase (ALP) conjugated globulin fraction (Bioreba, Switzerland) in GLRaV-3 positive grapevine samples. The immunoreactivity of the antiserum was confirmed through western blotting. The purified antiserum was conjugated with ALP. The primary antiserum along with ALP conjugate successfully detected the GLRaV-3 from the infected sample at 1:8000 and 1:10,000 dilutions, respectively. To the best of our knowledge, it is the first global study wherein the CP of GLRaV-3 was cloned in pET28a(+) expression vector having many advantages over the earlier used expression vectors. The cloned CP gene was expressed, purified and subjected to the production of immunoreagents. The developed immunoreagents will be useful for certification programmes as well as for large scale virus screening to produce GLRaV-3 free grapevines. The indigenously developed immunereagents will provide a cost-effective way of managing grapevine leafroll disease in Indian sub-continent.  相似文献   
939.
The Protein Data Bank (PDB) is the global archive for structural information on macromolecules, and a popular resource for researchers, teachers, and students, amassing more than one million unique users each year. Crystallographic structure models in the PDB (more than 100,000 entries) are optimized against the crystal diffraction data and geometrical restraints. This process of crystallographic refinement typically ignored hydrogen bond (H‐bond) distances as a source of information. However, H‐bond restraints can improve structures at low resolution where diffraction data are limited. To improve low‐resolution structure refinement, we present methods for deriving H‐bond information either globally from well‐refined high‐resolution structures from the PDB‐REDO databank, or specifically from on‐the‐fly constructed sets of homologous high‐resolution structures. Refinement incorporating HOmology DErived Restraints (HODER), improves geometrical quality and the fit to the diffraction data for many low‐resolution structures. To make these improvements readily available to the general public, we applied our new algorithms to all crystallographic structures in the PDB: using massively parallel computing, we constructed a new instance of the PDB‐REDO databank ( https://pdb-redo.eu ). This resource is useful for researchers to gain insight on individual structures, on specific protein families (as we demonstrate with examples), and on general features of protein structure using data mining approaches on a uniformly treated dataset.  相似文献   
940.
Dave S  Kaur NJ  Nanduri R  Dkhar HK  Kumar A  Gupta P 《PloS one》2012,7(1):e30831
The phytotherapeutic protein stem bromelain (SBM) is used as an anti-obesity alternative medicine. We show at the cellular level that SBM irreversibly inhibits 3T3-L1 adipocyte differentiation by reducing adipogenic gene expression and induces apoptosis and lipolysis in mature adipocytes. At the molecular level, SBM suppressed adipogenesis by downregulating C/EBPα and PPARγ independent of C/EBPβ gene expression. Moreover, mRNA levels of adipocyte fatty acid-binding protein (ap2), fatty acid synthase (FAS), lipoprotein lipase (LPL), CD36, and acetyl-CoA carboxylase (ACC) were also downregulated by SBM. Additionally, SBM reduced adiponectin expression and secretion. SBM's ability to repress PPARγ expression seems to stem from its ability to inhibit Akt and augment the TNFα pathway. The Akt-TSC2-mTORC1 pathway has recently been described for PPARγ expression in adipocytes. In our experiments, TNFα upregulation compromised cell viability of mature adipocytes (via apoptosis) and induced lipolysis. Lipolytic response was evident by downregulation of anti-lipolytic genes perilipin, phosphodiestersae-3B (PDE3B), and GTP binding protein G(i)α(1), as well as sustained expression of hormone sensitive lipase (HSL). These data indicate that SBM, together with all-trans retinoic-acid (atRA), may be a potent modulator of obesity by repressing the PPARγ-regulated adipogenesis pathway at all stages and by augmenting TNFα-induced lipolysis and apoptosis in mature adipocytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号