首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   10篇
  2023年   3篇
  2022年   3篇
  2021年   4篇
  2020年   6篇
  2019年   11篇
  2018年   8篇
  2017年   2篇
  2016年   1篇
  2015年   10篇
  2014年   8篇
  2013年   5篇
  2012年   11篇
  2011年   6篇
  2010年   4篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   4篇
  2004年   1篇
排序方式: 共有93条查询结果,搜索用时 171 毫秒
21.
The study presents length‐weight relationships (LWRs) and length‐lenght relationships (LLRs) for two freshwater fish species from the Cheshmeh‐Langan River (Iran; 32°50′N, 50°04′E), a part of the Tigris drainage basin. Fish were sampled by electrofishing (Samus 725M) in August and September 2017. The LWRs and LLRs obtained showed a high level of correlation (r2 > .98).  相似文献   
22.
There is considerable interest in understanding the fate of the Amazon over the coming century in the face of climate change, rising atmospheric CO2 levels, ongoing land transformation, and changing fire regimes within the region. In this analysis, we explore the fate of Amazonian ecosystems under the combined impact of these four environmental forcings using three terrestrial biosphere models (ED2, IBIS, and JULES) forced by three bias‐corrected IPCC AR4 climate projections (PCM1, CCSM3, and HadCM3) under two land‐use change scenarios. We assess the relative roles of climate change, CO2 fertilization, land‐use change, and fire in driving the projected changes in Amazonian biomass and forest extent. Our results indicate that the impacts of climate change are primarily determined by the direction and severity of projected changes in regional precipitation: under the driest climate projection, climate change alone is predicted to reduce Amazonian forest cover by an average of 14%. However, the models predict that CO2 fertilization will enhance vegetation productivity and alleviate climate‐induced increases in plant water stress, and, as a result, sustain high biomass forests, even under the driest climate scenario. Land‐use change and climate‐driven changes in fire frequency are predicted to cause additional aboveground biomass loss and reductions in forest extent. The relative impact of land use and fire dynamics compared to climate and CO2 impacts varies considerably, depending on both the climate and land‐use scenario, and on the terrestrial biosphere model used, highlighting the importance of improved quantitative understanding of all four factors – climate change, CO2 fertilization effects, fire, and land use – to the fate of the Amazon over the coming century.  相似文献   
23.
24.
25.

Background

Increased endocannabinoid tonus by dual-action fatty acid amide hydrolase (FAAH) and substrate selective cyclooxygenase (COX-2) inhibitors is a promising approach for pain-relief. One such compound with this profile is 2-(2-fluorobiphenyl-4-yl)-N-(3-methylpyridin-2-yl)propanamide (Flu-AM1). These activities are shown by Flu-AM1 racemate, but it is not known whether its two single enantiomers behave differently, as is the case towards COX-2 for the parent flurbiprofen enantiomers. Further, the effects of the compound upon COX-2-derived lipids in intact cells are not known.

Methodology/Principal Findings

COX inhibition was determined using an oxygraphic method with arachidonic acid and 2-arachidonoylglycerol (2-AG) as substrates. FAAH was assayed in mouse brain homogenates using anandamide (AEA) as substrate. Lipidomic analysis was conducted in unstimulated and lipopolysaccharide + interferon γ- stimulated RAW 264.7 macrophage cells. Both enantiomers inhibited COX-2 in a substrate-selective and time-dependent manner, with IC50 values in the absence of a preincubation phase of: (R)-Flu-AM1, COX-1 (arachidonic acid) 6 μM; COX-2 (arachidonic acid) 20 μM; COX-2 (2-AG) 1 μM; (S)-Flu-AM1, COX-1 (arachidonic acid) 3 μM; COX-2 (arachidonic acid) 10 μM; COX-2 (2-AG) 0.7 μM. The compounds showed no enantiomeric selectivity in their FAAH inhibitory properties. (R)-Flu-AM1 (10 μM) greatly inhibited the production of prostaglandin D2 and E2 in both unstimulated and lipopolysaccharide + interferon γ- stimulated RAW 264.7 macrophage cells. Levels of 2-AG were not affected either by (R)-Flu-AM1 or by 10 μM flurbiprofen, either alone or in combination with the FAAH inhibitor URB597 (1 μM).

Conclusions/Significance

Both enantiomers of Flu-AM1 are more potent inhibitors of 2-AG compared to arachidonic acid oxygenation by COX-2. Inhibition of COX in lipopolysaccharide + interferon γ- stimulated RAW 264.7 cells is insufficient to affect 2-AG levels despite the large induction of COX-2 produced by this treatment.  相似文献   
26.
Depressive symptoms are frequent in students and may lead to countless problems. Several hypotheses associate magnesium with depression because of the presence of this mineral in several enzymes, hormones, and neurotransmitters, which may play a key role in the pathological pathways of depression. The aim of this study was to assess whether magnesium intake could modulate depressive symptoms. A cross-sectional study was conducted on a convenience sample of 402 Iranian postgraduate students studying in Malaysia to assess the relationship between magnesium intake and depressive symptoms. The mean age of the participants was 32.54?±?6.22 years. The results of the study demonstrated an inverse relationship between magnesium intake and depressive symptoms, which persisted even after adjustments for sex, age, body mass index, monthly expenses, close friends, living on campus, smoking (current and former), education, physical activity, and marital status.  相似文献   
27.
Molecular Biology Reports - The ica genes in methicillin-resistant Staphylococcus aureus (MRSA) play an important role in biofilm formation. The aim of this study is to define effect of antibiotic...  相似文献   
28.
Biology Bulletin - The current study aimed to investigate responses of fennel (Foeniculum vulgare Mill) plants to salt stress through foliar spray of salicylic acid (SA) as priming agent. SA (0,...  相似文献   
29.
Neuroregeneration strategies involve multiple factors to stimulate nerve regeneration. Neural support with chemical and physical cues to optimize neural growth and replacing the lesion neuron and axons are crucial for designing neural scaffolds, which is a promising treatment approach. In this study, polypyrrole polymerization and its functionalization at the interface developed by glycine and gelatin for further optimization of cellular response. Nanofibrous scaffolds were fabricated by electrospinning of polyvinyl alcohol and chitosan solutions. The electrospun scaffolds were polymerized on the surface by pyrrole monomers to form an electroactive interface for further applications in neural tissue engineering. The polymerized polypyrrole showed a positive zeta potential value of 57.5 ± 5.46 mV. The in vitro and in vivo biocompatibility of the glycine and gelatin-functionalized polypyrrole-coated scaffolds were evaluated. No inflammatory cells were observed for the implanted scaffolds. Further, DAPI nucleus staining showed a superior cell attachment on the gelatin-functionalized polypyrrole-coated scaffolds. The topography and tuned positively charged polypyrrole interface with gelatin functionalization is expected to be particularly efficient physical and chemical simultaneous factors for promoting neural cell adhesion.  相似文献   
30.
Neuronal histone acetylation has been linked to memory consolidation, and targeting histone acetylation has emerged as a promising therapeutic strategy for neuropsychiatric diseases. However, the role of histone‐modifying enzymes in the adult brain is still far from being understood. Here we use RNA sequencing to screen the levels of all known histone acetyltransferases (HATs) in the hippocampal CA1 region and find that K‐acetyltransferase 2a (Kat2a)—a HAT that has not been studied for its role in memory function so far—shows highest expression. Mice that lack Kat2a show impaired hippocampal synaptic plasticity and long‐term memory consolidation. We furthermore show that Kat2a regulates a highly interconnected hippocampal gene expression network linked to neuroactive receptor signaling via a mechanism that involves nuclear factor kappa‐light‐chain‐enhancer of activated B cells (NF‐κB). In conclusion, our data establish Kat2a as a novel and essential regulator of hippocampal memory consolidation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号