首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   7篇
  116篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   1篇
  2018年   7篇
  2017年   2篇
  2016年   4篇
  2015年   4篇
  2014年   7篇
  2013年   8篇
  2012年   9篇
  2011年   12篇
  2010年   8篇
  2009年   3篇
  2008年   5篇
  2007年   4篇
  2006年   4篇
  2005年   4篇
  2004年   8篇
  2003年   4篇
  2002年   4篇
  2001年   1篇
  1993年   3篇
  1992年   1篇
  1985年   1篇
  1983年   2篇
  1980年   1篇
  1977年   1篇
排序方式: 共有116条查询结果,搜索用时 15 毫秒
21.
Three fresh water microalgal isolates [Phormidium ambiguum (Cyanobacterium), Pseudochlorococcum typicum and Scenedesmus quadricauda var quadrispina (Chlorophyta)] were tested for tolerance and removal of mercury (Hg2+), lead (Pb2+) and cadmium (Cd2+) in aqueous solutions as a single metal species at conc. 5–100 mg / L under controled laboratory conditions. The obtained results showed that Hg2+ was the most toxic of the three metal ions to the test algae even at low concentration (< 20 mg/L). While lower concentration of Pb2+ and Cd2+ (5–20 mg / L) enhanced the algal growth (chlorophyll a and protein), elevated concentrations (40–100 mg / L) were inhibitory to the growth. The results also revealed that Ph. ambiguum was the most sensitive alga to the three metal ions even at lower concentrations (5 and 10 mg / L) while P. typicum and S. quadricauda were more tolerant to high metal concentrations up to 100 mg / L. The bioremoval of heavy metal ions (Hg2+, Pb2+ and Cd2+) by P. typicum from aqueous solution showed that the highest percentage of metal bioremoval occurred in the first 30 min of contact recording 97% (Hg2+), 86% (Cd2+) and 70% (Pb2+). Transmission electron microscopy (TEM) was used to study the interaction between heavy metal ions and P. typicum cells. At ultrastructural level, an electron dense layers were detected on the algal cell surfaces when exposed to Cd, Hg and Pb. At the same time, dark spherical electron dense bodies were accumulated in the vacuoles of the algal cells exposed to Pb. Excessive accumulation of starch around the pyrenoids were recorded as well as deteriorations of the algal cell organelles exposed to the three metal ions.  相似文献   
22.
Niosomes have been claimed to enhance intestinal absorption and to widen the absorption window of acidic drugs. This was reported after monitoring the intestinal absorption in situ. Accordingly, the aim of this work was to investigate the effect of niosomal encapsulation on intestinal absorption and oral bioavailability of nateglinide. This was conducted with the goal of correlation between in situ intestinal absorption and in vivo availability. The drug was encapsulated into proniosomes. The niosomes resulting after hydration of proniosomes were characterized with respect to vesicle size and drug entrapment efficiency. The in situ rabbit intestinal absorption of nateglinide was monitored from its aqueous solution and niosomes. Streptozotocin was used to induce diabetes in albino rats which were then used to assess the hypoglycemic effect of nateglinide after oral administration of aqueous dispersion and niosomal systems. The prepared vesicles were in the nanoscale with the recorded size being 283?nm. The entrapment efficiency depended on the pH of the formulation. The in situ intestinal absorption reflected non-significant alteration in the membrane transport parameters of the drug after niosomal encapsulation compared with the free drug solution. In contrast, niosomes showed significant improvement in the rate and extent of the hypoglycemic effect compared with the unprocessed drug. This discrepancy can be attributed to different transport pathway for the drug after niosomal inclusion with the vesicles undergoing translymphatic transport which can minimize presystemic metabolism. However, this requires confirmatory investigations. In conclusion niosomes can enhance oral bioavailability of nateglinide with the absorption being through nontraditional pathway.  相似文献   
23.
Inorganic polyphosphate (polyP) is present in all living forms of life. Studied mainly in prokaryotes, polyP and its associated enzymes are vital in diverse metabolic activities, in some structural functions, and most importantly in stress responses. Bacterial species, including many pathogens, encode a homolog of a major polyP synthesis enzyme, Poly Phosphate Kinase (PPK) with 2 different genes coding for PPK1 and PPK2. Genetic deletion of the ppk1 gene leads to reduced polyP levels and the consequent loss of virulence and stress adaptation responses. This far, no PPK1 homolog has been identified in higher‐order eukaryotes, and, therefore, PPK1 represents a novel target for chemotherapy. The aim of the current study is to investigate PPK1 from Escherichia coli with comprehensive understanding of the enzyme's structure and binding sites, which were used to design pharmacophores and screen a library of compounds for potential discovery of selective PPK1 inhibitors. Verification of the resultant inhibitors activities was conducted using a combination of mutagenic and chemical biological approaches. The metabolic phenotypic maps of the wild type E. coli (WT) and ppk1 knockout mutant were generated and compared with the metabolic map of the chemically inhibited WT. In addition, biofilm formation ability was measured in WT, ppk1 knockout mutant, and the chemically inhibited WT. The results demonstrated that chemical inhibition of PPK1, with the designed inhibitors, was equivalent to gene deletion in altering specific metabolic pathways, changing the metabolic fingerprint, and suppressing the ability of E. coli to form a biofilm.  相似文献   
24.
Endocytosis and vesicle trafficking are required for optimal neural transmission. Yet, little is currently known about the evolution of neuronal proteins regulating these processes. Here, we report the first phylogenetic study of NEEP21, calcyon, and P19, a family of neuronal proteins implicated in synaptic receptor endocytosis and recycling, as well as in membrane protein trafficking in the somatodendritic and axonal compartments of differentiated neurons. Database searches identified orthologs for P19 and NEEP21 in bony fish, but not urochordate or invertebrate phyla. Calcyon orthologs were only retrieved from mammalian databases and distant relatives from teleost fish. In situ localization of the P19 zebrafish ortholog, and extant progenitor of the gene family, revealed a CNS specific expression pattern. Based on non-synonymous nucleotide substitution rates, the calcyon genes appear to be under less intense negative selective pressure. Indeed, a functional group II WW domain binding motif was detected in primate and human calcyon, but not in non-primate orthologs. Sequencing of the calcyon gene from 80 human subjects revealed a non-synonymous single nucleotide polymorphism that abrogated group II WW domain protein binding. Altogether, our data indicate the NEEP21/calcyon/P19 gene family emerged, and underwent two rounds of gene duplication relatively late in metazoan evolution (but early in vertebrate evolution at the latest). As functional studies suggest NEEP21 and calcyon play related, but distinct roles in regulating vesicle trafficking at synapses, and in neurons in general, we propose the family arose in chordates to support a more diverse range of synaptic and behavioral responses.  相似文献   
25.
The aim of the present study was to assess the effect of a commercial alginic acid source (Ergosan) on tilapia Oreochromis niloticus intestinal microbial balance, intestinal morphology, and growth parameters. Fish were fed a basal control diet or the basal diet plus a source of alginic acid (5?g?kg(-1) Ergosan; Schering-Plough Aquaculture, UK) for 9?weeks. At the end of the trial, light and electron microscopy demonstrated that the morphology of the intestinal tract at the gross and ultra-structural level was not affected by dietary alginic acid inclusion. Both groups of fish displayed healthy, normal morphology with no signs of disease, cell or tissue damage. Intestinal epithelial leucocyte infiltration was not affected by dietary alginic acid. Molecular bacterial profiles derived from PCR-DGGE illustrated highly similar microbial communities (both within the lumen and associated with the intestinal mucosa) in the respective treatment groups. Microbial ecological parameters (e.g. species diversity and richness) also remained unaffected. Although not significant, trends towards elevated survival and body protein content were observed in the alginic acid-fed fish. These results are suggestive that alginic acid does not adversely impact the indigenous gastrointestinal microbial balance and subsequently does not impact upon the epithelial brush border integrity. Validation of non-detrimental impacts of immunostimulatory products on gastric microbiota and epithelial integrity should be pursued in future studies as maintaining microbial balance and epithelial integrity is essential for proper gut functionality.  相似文献   
26.
Molecular Biology Reports - Hepatocellular carcinoma (HCC) is a tough opponent. HCC contributes to 14.8% of all cancer mortality in Egypt. There are many choices for management of HCC; however...  相似文献   
27.
Altered miRNAs were associated with cigarette smoking. The study aimed to examine the gene expression level of plasma let-7a among healthy smokers and compared it with the non-smokers. Forty subjects were recruited for the present study and classified into 21 smokers and 19 non-smokers, age, and sex were matched. The software that used to design functional primers was MIRprimer. Quantitative real-time PCR was employed to compare the relative expression of plasma let-7a. Results showed that the level of let-7a was down-regulated in smokers to 0.34fold (p?=?0.006) that of the non-smokers. Plasma let-7a showed an area under curve (AUC) of 0.749 with sensitivity 43% and specificity 100%. In conclusion, plasma let-7a was significantly down-regulated in the smokers, and it might be considered a candidate biomarker to discriminate between smokers and non-smokers.  相似文献   
28.
29.
Autoantibodies and the immunoreceptors to which they bind can contribute to the pathogenesis of autoimmune diseases such as rheumatoid arthritis (RA). Spleen Tyrosine Kinase (Syk) is a non-receptor tyrosine kinase with a central role in immunoreceptor (FcR) signaling and immune cell functionality. Syk kinase inhibitors have activity in antibody-dependent immune cell activation assays, in preclinical models of arthritis, and have progressed into clinical trials for RA and other autoimmune diseases. Here we describe the characterization of a novel triazolopyridine-based Syk kinase inhibitor, CC-509. This compound is a potent inhibitor of purified Syk enzyme, FcR-dependent and FcR-independent signaling in primary immune cells, and basophil activation in human whole blood. CC-509 is moderately selective across the kinome and against other non-kinase enzymes or receptors. Importantly, CC-509 was optimized away from and has modest activity against cellular KDR and Jak2, kinases that when inhibited in a preclinical and clinical setting may promote hypertension and neutropenia, respectively. In addition, CC-509 is orally bioavailable and displays dose-dependent efficacy in two rodent models of immune-inflammatory disease. In passive cutaneous anaphylaxis (PCA), CC-509 significantly inhibited skin edema. Moreover, CC-509 significantly reduced paw swelling and the tissue levels of pro-inflammatory cytokines RANTES and MIP-1α in the collagen-induced arthritis (CIA) model. In summary, CC-509 is a potent, moderately selective, and efficacious inhibitor of Syk that has a differentiated profile when compared to other Syk compounds that have progressed into the clinic for RA.  相似文献   
30.
Histidine triad nucleotide binding protein (Hint) is considered as the ancestor of the histidine triad protein superfamily and is highly conserved from bacteria to humans. Prokaryote genomes, including a wide array of both Gram-negative bacteria and Gram-positive bacteria, typically encode one Hint gene. The cellular function of Hint and the rationale for its evolutionary conservation in bacteria have remained a mystery. Despite its ubiquity and high sequence similarity to eukaryote Hint1 [Escherichia coli Hint (echinT) is 48% identical with human Hint1], prokaryote Hint has been reported in only a few studies. Here we report the first conformational information on the full-length N-terminal and C-terminal residues of Hint from the E. coli complex with GMP. Structural analysis of the echinT-GMP complex reveals that it crystallizes in the monoclinic space group P21 with four homodimers in the asymmetric unit. Analysis of electron density for both the N-terminal residues and the C-terminal residues of the echinT-GMP complex indicates that the loops in some monomers can adopt more than one conformation. The observation of conformational flexibility in terminal loop regions could explain the presence of multiple homodimers in the asymmetric unit of this structure. To explore the impact of the echinT C-terminus on protein structure and catalysis, we conducted a series of catalytic radiolabeling and kinetic experiments on the C-terminal deletion mutants of echinT. In this study, we show that sequential deletion of the C-terminus likely has no effect on homodimerization and a modest effect on the secondary structure of echinT. However, we observed a significant impact on the folding structure, as reflected by a significant lowering of the Tm value. Kinetic analysis reveals that the C-terminal deletion mutants are within an order of magnitude less efficient in catalysis compared to wild type, while the overall kinetic mechanism that proceeds through a fast step, followed by a rate-limiting hydrolysis step, was conserved. Nevertheless, the ability of the C-terminal deletion mutants to hydrolyze lysyl-AMP generated by LysU was greatly impaired. Taken together, our results highlight the emerging role of the C-terminus in governing the catalytic function of Hints.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号