首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2411篇
  免费   153篇
  2023年   8篇
  2022年   18篇
  2021年   38篇
  2020年   15篇
  2019年   28篇
  2018年   36篇
  2017年   23篇
  2016年   53篇
  2015年   105篇
  2014年   94篇
  2013年   117篇
  2012年   153篇
  2011年   174篇
  2010年   100篇
  2009年   94篇
  2008年   124篇
  2007年   136篇
  2006年   139篇
  2005年   100篇
  2004年   131篇
  2003年   140篇
  2002年   115篇
  2001年   42篇
  2000年   27篇
  1999年   37篇
  1998年   39篇
  1997年   30篇
  1996年   19篇
  1995年   18篇
  1994年   23篇
  1993年   28篇
  1992年   22篇
  1991年   23篇
  1990年   22篇
  1989年   26篇
  1988年   16篇
  1987年   13篇
  1986年   19篇
  1985年   18篇
  1984年   25篇
  1983年   26篇
  1982年   12篇
  1981年   16篇
  1980年   8篇
  1979年   15篇
  1978年   12篇
  1977年   12篇
  1974年   9篇
  1973年   7篇
  1971年   9篇
排序方式: 共有2564条查询结果,搜索用时 93 毫秒
71.
Ras GTPase Activating Protein SH3 Domain Binding Protein (G3BP) is a potential anti-cancer drug target implicated in several cellular functions. We have used protein crystallography to solve crystal structures of the human G3BP1 NTF2-like domain both alone and in complex with an FxFG Nup repeat peptide. Despite high structural similarity, the FxFG binding site is located between two alpha helices in the G3BP1 NTF2-like domain and not at the dimer interface as observed for nuclear transport factor 2. ITC studies showed specificity towards the FxFG motif but not FG and GLFG motifs. The unliganded form of the G3BP1 NTF2-like domain was solved in two crystal forms to resolutions of 1.6 and 3.3 Å in space groups P212121 and P6322 based on two different constructs, residues 1–139 and 11–139, respectively. Crystal packing of the N-terminal residues against a symmetry related molecule in the P212121 crystal form might indicate a novel ligand binding site that, however, remains to be validated. The crystal structures give insight into the nuclear transportation mechanisms of G3BP and provide a basis for future structure based drug design.  相似文献   
72.
Aquaporin-4 (AQP4) is the primary cellular water channel in the brain and is abundantly expressed by astrocytes along the blood-brain barrier and brain-cerebrospinal fluid interfaces. Water transport via AQP4 contributes to the activity-dependent volume changes of the extracellular space (ECS), which affect extracellular solute concentrations and neuronal excitability. AQP4 is anchored by α-syntrophin (α-syn), the deletion of which leads to reduced AQP4 levels in perivascular and subpial membranes. We used the real-time iontophoretic method and/or diffusion-weighted magnetic resonance imaging to clarify the impact of α-syn deletion on astrocyte morphology and changes in extracellular diffusion associated with cell swelling in vitro and in vivo. In mice lacking α-syn, we found higher resting values of the apparent diffusion coefficient of water (ADCW) and the extracellular volume fraction (α). No significant differences in tortuosity (λ) or non-specific uptake (k′), were found between α-syn-negative (α-syn −/−) and α-syn-positive (α-syn +/+) mice. The deletion of α-syn resulted in a significantly smaller relative decrease in α observed during elevated K+ (10 mM) and severe hypotonic stress (−100 mOsmol/l), but not during mild hypotonic stress (−50 mOsmol/l). After the induction of terminal ischemia/anoxia, the final values of ADCW as well as of the ECS volume fraction α indicate milder cell swelling in α-syn −/− in comparison with α-syn +/+ mice. Shortly after terminal ischemia/anoxia induction, the onset of a steep rise in the extracellular potassium concentration and an increase in λ was faster in α-syn −/− mice, but the final values did not differ between α-syn −/− and α-syn +/+ mice. This study reveals that water transport through AQP4 channels enhances and accelerates astrocyte swelling. The substantially altered ECS diffusion parameters will likely affect the movement of neuroactive substances and/or trophic factors, which in turn may modulate the extent of tissue damage and/or drug distribution.  相似文献   
73.
74.
FLAGELLIN-SENSING 2 (FLS2) is a leucine-rich repeat/transmembrane domain/protein kinase (LRR-RLK) that is the plant receptor for bacterial flagellin or the flagellin-derived flg22 peptide. Previous work has shown that after flg22 binding, FLS2 releases BIK1 kinase and homologs and associates with BAK1 kinase, and that FLS2 kinase activity is critical for FLS2 function. However, the detailed mechanisms for activation of FLS2 signaling remain unclear. The present study initially identified multiple FLS2 in vitro phosphorylation sites and found that Serine-938 is important for FLS2 function in vivo. FLS2-mediated immune responses are abolished in transgenic plants expressing FLS2S938A, while the acidic phosphomimic mutants FLS2S938D and FLS2S938E conferred responses similar to wild-type FLS2. FLS2-BAK1 association and FLS2-BIK1 disassociation after flg22 exposure still occur with FLS2S938A, demonstrating that flg22-induced BIK1 release and BAK1 binding are not sufficient for FLS2 activity, and that Ser-938 controls other aspects of FLS2 activity. Purified BIK1 still phosphorylated purified FLS2S938A and FLS2S938D mutant kinase domains in vitro. Phosphorylation of BIK1 and homologs after flg22 exposure was disrupted in transgenic Arabidopsis thaliana plants expressing FLS2S938A or FLS2D997A (a kinase catalytic site mutant), but was normally induced in FLS2S938D plants. BIK1 association with FLS2 required a kinase-active FLS2, but FLS2-BAK1 association did not. Hence FLS2-BIK1 dissociation and FLS2-BAK1 association are not sufficient for FLS2-mediated defense activation, but the proposed FLS2 phosphorylation site Ser-938 and FLS2 kinase activity are needed both for overall defense activation and for appropriate flg22-stimulated phosphorylation of BIK1 and homologs.  相似文献   
75.
76.
77.
NY-ESO-1 and LAGE-1 are cancer testis antigens with an ideal profile for tumor immunotherapy, combining up-regulation in many cancer types with highly restricted expression in normal tissues and sharing a common HLA-A*0201 epitope, 157–165. Here, we present data to describe the specificity and anti-tumor activity of a bifunctional ImmTAC, comprising a soluble, high-affinity T-cell receptor (TCR) specific for NY-ESO-1157–165 fused to an anti-CD3 scFv. This reagent, ImmTAC-NYE, is shown to kill HLA-A2, antigen-positive tumor cell lines, and freshly isolated HLA-A2- and LAGE-1-positive NSCLC cells. Employing time-domain optical imaging, we demonstrate in vivo targeting of fluorescently labelled high-affinity NYESO-specific TCRs to HLA-A2-, NY-ESO-1157–165-positive tumors in xenografted mice. In vivo ImmTAC-NYE efficacy was tested in a tumor model in which human lymphocytes were stably co-engrafted into NSG mice harboring tumor xenografts; efficacy was observed in both tumor prevention and established tumor models using a GFP fluorescence readout. Quantitative RT-PCR was used to analyze the expression of both NY-ESO-1 and LAGE-1 antigens in 15 normal tissues, 5 cancer cell lines, 10 NSCLC, and 10 ovarian cancer samples. Overall, LAGE-1 RNA was expressed at a greater frequency and at higher levels than NY-ESO-1 in the tumor samples. These data support the clinical utility of ImmTAC-NYE as an immunotherapeutic agent for a variety of cancers.  相似文献   
78.
The IFNL4 gene is a recently discovered type III interferon, which in a significant fraction of the human population harbours a frameshift mutation abolishing the IFNλ4 ORF. The expression of IFNλ4 is correlated with both poor spontaneous clearance of hepatitis C virus (HCV) and poor response to treatment with type I interferon. Here, we show that the IFNL4 gene encodes an active type III interferon, named IFNλ4, which signals through the IFNλR1 and IL‐10R2 receptor chains. Recombinant IFNλ4 is antiviral against both HCV and coronaviruses at levels comparable to IFNλ3. However, the secretion of IFNλ4 is impaired compared to that of IFNλ3, and this impairment is not due to a weak signal peptide, which was previously believed. We found that IFNλ4 gets N‐linked glycosylated and that this glycosylation is required for secretion. Nevertheless, this glycosylation is not required for activity. Together, these findings result in the paradox that IFNλ4 is strongly antiviral but a disadvantage during HCV infection.  相似文献   
79.
In order to analyze whether impairments to health and well‐being under flexible working hours can be predicted from specific characteristics of the work schedules, periodic components in flexible working hours and their interference with the circadian temperature rhythm were analyzed applying univariate and bivariate spectrum analyses to both time series. The resulting indicators of spectral power and phase shift of these components were then related to reported health impairments using regression analysis. The results show that a suppression of both the 24 and the 168 h components in the work schedules (i.e., a lack of periodicity) can be used to predict reported health impairments, and that if there are relatively strong 24 and 168 h components left in the work schedules, their phase difference with the temperature rhythm (as an indicator of the interference between working time and the circadian rhythm) further predicts impairment. The results indicate that the periodicity of working hours and the amount of (circadian) desynchronization induced by flexible work schedules can be used for predicting the impairing effects of flexible work schedules on health and well‐being. The results can thus be used for evaluating and designing flexible shift rosters.  相似文献   
80.

Aims

Application of carbon (C) and nitrogen (N) isotopes is an essential tool to study C and N flows in plant-soil-microorganisms systems. When targeting single plants in a community the tracers need to be added via e.g., leaf-labeling or stem-feeding approaches. In this study we: (i) investigated if bicarbonate can be used to introduce 14C (or 13C) into white clover and ryegrass, and (ii) compared the patterns of 14C and 15N allocation in white clover and ryegrass to evaluate the homogeneity of tracer distribution after two alternative labeling approaches.

Methods

Perennial ryegrass and white clover were pulse labeled with 15N urea via leaf-labeling and 14C either via a 14CO2 atm or with 14C bicarbonate through leaf-labeling. Plants were sampled 4 days after labeling and prepared for bulk isotope analysis and for 14C imaging to identify plant parts with high and low 14C activity. Subsequently, plant parts with high and low 14C activity were separated and analyzed for 15N enrichment.

Results

Bicarbonate applied by leaf-labeling efficiently introduced 14C into both white clover and ryegrass, although the 14C activity in particular for white clover was found predominantly in the labeled leaf. Using 14C imaging for identification of areas with high (hotspots) and low 14C activity showed that 14C was incorporated very heterogeneously both when using bicarbonate and CO2 as expected when using pulse labeling. Subsequent analysis of 15N enrichment in plant parts with high and low 14C activity showed that 15N also had a heterogeneous distribution (up to two orders of magnitude).

Conclusion

Bicarbonate can efficiently be used to introduce 14C or 13C into plant via the leaf-labeling method. Both 14C and 15N showed heterogeneous distribution in the plant, although the distribution of 15N was more even than that of 14C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号