首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7439篇
  免费   719篇
  国内免费   6篇
  8164篇
  2023年   51篇
  2022年   117篇
  2021年   236篇
  2020年   154篇
  2019年   184篇
  2018年   181篇
  2017年   158篇
  2016年   210篇
  2015年   357篇
  2014年   384篇
  2013年   466篇
  2012年   555篇
  2011年   547篇
  2010年   321篇
  2009年   294篇
  2008年   385篇
  2007年   398篇
  2006年   331篇
  2005年   339篇
  2004年   318篇
  2003年   279篇
  2002年   275篇
  2001年   68篇
  2000年   44篇
  1999年   67篇
  1998年   84篇
  1997年   43篇
  1996年   35篇
  1995年   39篇
  1994年   33篇
  1993年   47篇
  1992年   46篇
  1991年   31篇
  1990年   34篇
  1989年   40篇
  1988年   31篇
  1987年   40篇
  1986年   36篇
  1985年   29篇
  1984年   38篇
  1982年   45篇
  1981年   46篇
  1980年   43篇
  1979年   26篇
  1978年   40篇
  1977年   30篇
  1975年   33篇
  1974年   30篇
  1973年   29篇
  1972年   24篇
排序方式: 共有8164条查询结果,搜索用时 0 毫秒
101.
Starch mobilization in leaves   总被引:13,自引:0,他引:13  
Starch mobilization is well understood in cereal endosperms, but both the pathway and the regulation of the process are poorly characterized in other types of plant organs. Arabidopsis leaves offer the opportunity for rapid progress in this area, because of the genomic resources available in this species and the ease with which starch synthesis and degradation can be monitored and manipulated. Progress in understanding three aspects of starch degradation is described: the role of disproportionating enzyme, the importance of phosphorolytic degradation, and new evidence about the involvement of a starch-phosphorylating enzyme in the degradative process. Major areas requiring further research are outlined.  相似文献   
102.
103.
Inhibitory Action of Tetrathionate Enrichment Broth   总被引:2,自引:1,他引:2       下载免费PDF全文
Tetrathionate enrichment broth is a complex mixture of salts including iodides and other polythionates, but only thiosulfate (0.0736 m) and tetrathionate (0.0236 m) in combination were toxic for Escherichia coli. Individually, these two salts were not lethal. The lethal action of this thiosulfate-tetrathionate mixture affected only growing cells. A possible relationship between the lethality of the thiosulfate-tetrathionate mixture for a culture and its ability to reduce tetrathionate is suggested.  相似文献   
104.
STARCH SYNTHASE4 (SS4) is required for proper starch granule initiation in Arabidopsis (Arabidopsis thaliana), although SS3 can partially replace its function. Unlike other starch-deficient mutants, ss4 and ss3/ss4 mutants grow poorly even under long-day conditions. They have less chlorophyll and carotenoids than the wild type and lower maximal rates of photosynthesis. There is evidence of photooxidative damage of the photosynthetic apparatus in the mutants from chlorophyll a fluorescence parameters and their high levels of malondialdehyde. Metabolite profiling revealed that ss3/ss4 accumulates over 170 times more ADP-glucose (Glc) than wild-type plants. Restricting ADP-Glc synthesis, by introducing mutations in the plastidial phosphoglucomutase (pgm1) or the small subunit of ADP-Glc pyrophosphorylase (aps1), largely restored photosynthetic capacity and growth in pgm1/ss3/ss4 and aps1/ss3/ss4 triple mutants. It is proposed that the accumulation of ADP-Glc in the ss3/ss4 mutant sequesters a large part of the plastidial pools of adenine nucleotides, which limits photophosphorylation, leading to photooxidative stress, causing the chlorotic and stunted growth phenotypes of the plants.The metabolism of starch plays an essential role in the physiology of plants. Starch breakdown provides the plant with carbon skeletons and energy when the photosynthetic machinery is inactive (transitory starch) or in the processes of germination and sprouting (storage starch). Deficiencies in the accumulation of transitory starch in Arabidopsis (Arabidopsis thaliana) have been described previously, specifically in mutants affected in the plastidial phosphoglucomutase (PGM1) or the small subunit (APS1) of the ADP-Glc pyrophosphorylase (AGPase). While they are described as “starchless,” they actually contain small amounts of starch (1%–2% of the wild-type levels; Streb et al., 2009) and share similar phenotypic alterations, such as growth retardation when cultivated under a short-day photoregime and increased levels of soluble sugars during the light phase and reduced levels during the night (Caspar et al., 1985; Lin et al., 1988b; Schulze et al., 1991). Carbon partitioning is altered in these plants. As photosynthate cannot be accumulated as starch, it is diverted via hexose phosphates in the cytosol to the synthesis of Suc, which accumulates together with the hexose sugars, Glc and Fru (Caspar et al., 1985). In Arabidopsis, there are five starch synthase isoforms: one granule-bound starch synthase and four soluble starch synthases: SS1, SS2, SS3, and SS4. We have described previously an Arabidopsis mutant plant lacking SS3 and SS4 that is also severely affected in the accumulation of starch (Szydlowski et al., 2009). SS4 is involved in the initiation of the starch granule and controls the number of granules per chloroplast (Roldán et al., 2007). The elimination of SS3 in an ss4 background leads to an absence of starch in most of the chloroplasts, despite the fact that SS1 and SS2 are still present and total starch synthase activity is only reduced by 35% (Szydlowski et al., 2009). However, a very small proportion of chloroplasts of this mutant plant contain a single huge starch granule, which is also a characteristic of chloroplasts in the ss4 single mutant (D’Hulst and Mérida, 2012). Thus, like aps1 and pgm1, ss3/ss4 plants contain only small amounts of starch. However, unlike aps1 or pgm1 plants, most of the cells of this mutant have empty chloroplasts, without starch (Szydlowski et al., 2009).In this work, we have analyzed the phenotypic effects of the impaired starch accumulation of ss3/ss4 plants. We show that this mutant displays phenotypic changes that are not found in other mutants with very low levels of starch, such as aps1 or pgm1 plants. We provide evidence that extremely high levels of ADP-Glc accumulate in the ss3/ss4 plants. Using reverse genetics to block the pathway of starch synthesis upstream of the starch synthases reduced the level of ADP-Glc in ss3/ss4 plants and reverted the other phenotypic traits. This suggests that ADP-Glc accumulation is the causal factor behind the chlorotic and stunted growth phenotypes of the ss3/ss4 mutant.  相似文献   
105.
106.
The respiration of thin aerated discs of potato tuber tissue rises sigmoidally through 24 h. Aged disc respiration is ostensibly resistant to concentrations of cyanide which inhibit the respiration of fresh discs. It has been shown that cyanide-resistant respiration does not represent indifference to the inhibitor, but is rather due to the suppression of one respiratory carbon path and the evocation of another. The predominant respiratory carbon path of aged discs in the absence of cyanide comprises glycolysis linked to the tricarboxylic acid cycle. The carbon path mediating the cyanide-induced respiration reflects tricarboxylic acid cycle-independent lipid degradation.

The respiratory substrate at any time was deduced by comparing the 13C/12C ratio of respired CO2, collected from discs in the presence or absence of cyanide, with the 13C/12C ratios characterizing endogenous potential metabolites. The determination of the predominant respiratory substrate in potato discs, which have an endogenous substrate reserve, proved possible because the relative concentrations of the stable carbon isotopes in endogenous compounds such as lipid and starch are widely different.  相似文献   

107.
The purpose of the present study was to assess atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) mineralization by indigenous microbial communities and to investigate constraints associated with atrazine biodegradation in environmental samples collected from surface soil and subsurface zones at an agricultural site in Ohio. Atrazine mineralization in soil and sediment samples was monitored as 14CO2 evolution in biometers which were amended with 14C-labeled atrazine. Variables of interest were the position of the label ([U-14C-ring]-atrazine and [2-14C-ethyl]-atrazine), incubation temperature (25°C and 10°C), inoculation with a previously characterized atrazine-mineralizing bacterial isolate (M91-3), and the effect of sterilization prior to inoculation. In uninoculated biometers, mineralization rate constants declined with increasing sample depth. First-order mineralization rate constants were somewhat lower for [2-14C-ethyl]-atrazine when compared to those of [U-14C-ring]-atrazine. Moreover, the total amount of 14CO2 released was less with [2-14C-ethyl]-atrazine. Mineralization at 10°C was slow and linear. In inoculated biometers, less 14CO2 was released in [2-14C-ethyl]-atrazine experiments as compared with [U-14C-ring]-atrazine probably as a result of assimilatory incorporation of 14C into biomass. The mineralization rate constants (k) and overall extents of mineralization (P max ) were higher in biometers that were not sterilized prior to inoculation, suggesting that the native microbial populations in the sediments were contributing to the overall release of 14CO2 from [U-14C-ring]-atrazine and [2-14C-ethyl]-atrazine. A positive correlation between k and aqueous phase atrazine concentrations (C eq ) in the biometers was observed at 25°C, suggesting that sorption of atrazine influenced mineralization rates. The sorption effect on atrazine mineralization was greatly diminished at 10°C. It was concluded that sorption can limit biodegradation rates of weakly-sorbing solutes at high solid-to-solution ratios and at ambient surface temperatures if an active degrading population is present. Under vadose zone and subsurface aquifer conditions, however, low temperatures and the lack of degrading organisms are likely to be primary factors limiting the biodegradation of atrazine.Abbreviations C eq solution phase atrazine concentration at equilibrium - C s amount of atrazine sorbed - CLA [2-14C-ethyl]-atrazine - k first-order mineralization rate constant - K d sorption coefficient - m slope - P max maximum amount of CO2 released - RLA [U-14C-ring]-atrazine  相似文献   
108.
Human 8-oxoguanine DNA glycosylase (OGG1) excises the mutagenic oxidative DNA lesion 8-oxo-7,8-dihydroguanine (8-oxoG) from DNA. Kinetic characterization of OGG1 is undertaken to measure the rates of 8-oxoG excision and product release. When the OGG1 concentration is lower than substrate DNA, time courses of product formation are biphasic; a rapid exponential phase (i.e. burst) of product formation is followed by a linear steady-state phase. The initial burst of product formation corresponds to the concentration of enzyme properly engaged on the substrate, and the burst amplitude depends on the concentration of enzyme. The first-order rate constant of the burst corresponds to the intrinsic rate of 8-oxoG excision and the slower steady-state rate measures the rate of product release (product DNA dissociation rate constant, koff). Here, we describe steady-state, pre-steady-state, and single-turnover approaches to isolate and measure specific steps during OGG1 catalytic cycling. A fluorescent labeled lesion-containing oligonucleotide and purified OGG1 are used to facilitate precise kinetic measurements. Since low enzyme concentrations are used to make steady-state measurements, manual mixing of reagents and quenching of the reaction can be performed to ascertain the steady-state rate (koff). Additionally, extrapolation of the steady-state rate to a point on the ordinate at zero time indicates that a burst of product formation occurred during the first turnover (i.e. y-intercept is positive). The first-order rate constant of the exponential burst phase can be measured using a rapid mixing and quenching technique that examines the amount of product formed at short time intervals (<1 sec) before the steady-state phase and corresponds to the rate of 8-oxoG excision (i.e. chemistry). The chemical step can also be measured using a single-turnover approach where catalytic cycling is prevented by saturating substrate DNA with enzyme (E>S). These approaches can measure elementary rate constants that influence the efficiency of removal of a DNA lesion.  相似文献   
109.
A mannose-binding lectin (Narcissus tazetta lectin [NTL]) with potent antiviral activity was isolated and purified from the bulbs of the Chinese daffodil Narcissus tazetta var. chinensis, using ion exchange chromatography on diethylaminoethyl (DEAE)-cellulose, affinity chromatography on mannose-agarose and fast protein liquid chromatography (FPLC)-gel filtration on Superose 12. The purified lectin was shown to have an apparent molecular mass of 26 kDa by gel filtration and 13 kDa by SDS-PAGE, indicating that it is probably a dimer with two identical subunits. The cDNA-derived amino acid sequence of NTL as determined by molecular cloning also reveals that NTL protein contains a mature polypeptide consisting of 105 amino acids and a C-terminal peptide extension. Three-dimensional modelling study demonstrated that the NTL primary polypeptide contains three subdomains, each with a conserved mannose-binding site. It shows a high homology of about 60%–80% similarity with the existing monocot mannose-binding lectins. NTL could significantly inhibit plaque formation by the human respiratory syncytial virus (RSV) with an IC50 of 2.30 μg/ml and exhibit strong antiviral properties against influenza A (H1N1, H3N2, H5N1) and influenza B viruses with IC50 values ranging from 0.20 μg/ml to 1.33 μg/ml in a dose-dependent manner. It is worth noting that the modes of antiviral action of NTL against RSV and influenza A virus are significantly different. NTL is effective in the inhibition of RSV during the whole viral infection cycle, but the antiviral activity of NTL is mainly expressed at the early stage of the viral cycle of influenza A (H1N1) virus. NTL with a high selective index (SI=CC50/IC50≥141) resulting from its potent antiviral activity and low cytotoxicity demonstrates a potential for biotechnological development as an antiviral agent.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号