首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7378篇
  免费   682篇
  国内免费   6篇
  8066篇
  2023年   51篇
  2022年   116篇
  2021年   232篇
  2020年   153篇
  2019年   183篇
  2018年   191篇
  2017年   164篇
  2016年   211篇
  2015年   355篇
  2014年   380篇
  2013年   462篇
  2012年   548篇
  2011年   543篇
  2010年   321篇
  2009年   289篇
  2008年   381篇
  2007年   392篇
  2006年   328篇
  2005年   336篇
  2004年   315篇
  2003年   279篇
  2002年   272篇
  2001年   67篇
  2000年   43篇
  1999年   65篇
  1998年   83篇
  1997年   38篇
  1996年   32篇
  1995年   36篇
  1994年   30篇
  1993年   42篇
  1992年   44篇
  1991年   30篇
  1990年   31篇
  1989年   40篇
  1988年   29篇
  1987年   37篇
  1986年   33篇
  1985年   28篇
  1984年   36篇
  1983年   23篇
  1982年   43篇
  1981年   44篇
  1980年   42篇
  1979年   23篇
  1978年   39篇
  1977年   29篇
  1975年   33篇
  1974年   30篇
  1973年   29篇
排序方式: 共有8066条查询结果,搜索用时 15 毫秒
41.
Samuel G  Reeves P 《Carbohydrate research》2003,338(23):2503-2519
The O-antigen is an important component of the outer membrane of Gram-negative bacteria. It is a repeat unit polysaccharide and consists of a number of repeats of an oligosaccharide, the O-unit, which generally has between two and six sugar residues. O-Antigens are extremely variable, the variation lying in the nature, order and linkage of the different sugars within the polysaccharide. The genes involved in O-antigen biosynthesis are generally found on the chromosome as an O-antigen gene cluster, and the structural variation of O-antigens is mirrored by genetic variation seen in these clusters. The genes within the cluster fall into three major groups. The first group is involved in nucleotide sugar biosynthesis. These genes are often found together in the cluster and have a high level of identity. The genes coding for a significant number of nucleotide sugar biosynthesis pathways have been identified and these pathways seem to be conserved in different O-antigen clusters and across a wide range of species. The second group, the glycosyl transferases, is involved in sugar transfer. They are often dispersed throughout the cluster and have low levels of similarity. The third group is the O-antigen processing genes. This review is a summary of the current knowledge on these three groups of genes that comprise the O-antigen gene clusters, focusing on the most extensively studied E. coli and S. enterica gene clusters.  相似文献   
42.
43.

Background  

Chaetognaths, or arrow worms, are small marine, bilaterally symmetrical metazoans. The objective of this study was to analyse ribosomal protein (RP) coding sequences from a published collection of expressed sequence tags (ESTs) from a chaetognath (Spadella cephaloptera) and to use them in phylogenetic studies.  相似文献   
44.
45.
Measuring molecular evolution in bacteria typically requires estimation of the rate at which nucleotide changes accumulate in strains sampled at different times that share a common ancestor. This approach has been useful for dating ecological and evolutionary events that coincide with the emergence of important lineages, such as outbreak strains and obligate human pathogens. However, in multi-host (niche) transmission scenarios, where the pathogen is essentially an opportunistic environmental organism, sampling is often sporadic and rarely reflects the overall population, particularly when concentrated on clinical isolates. This means that approaches that assume recent common ancestry are not applicable. Here we present a new approach to estimate the molecular clock rate in Campylobacter that draws on the popular probability conundrum known as the ‘birthday problem’. Using large genomic datasets and comparative genomic approaches, we use isolate pairs that share recent common ancestry to estimate the rate of nucleotide change for the population. Identifying synonymous and non-synonymous nucleotide changes, both within and outside of recombined regions of the genome, we quantify clock-like diversification to estimate synonymous rates of nucleotide change for the common pathogenic bacteria Campylobacter coli (2.4 x 10−6 s/s/y) and Campylobacter jejuni (3.4 x 10−6 s/s/y). Finally, using estimated total rates of nucleotide change, we infer the number of effective lineages within the sample time frame–analogous to a shared birthday–and assess the rate of turnover of lineages in our sample set over short evolutionary timescales. This provides a generalizable approach to calibrating rates in populations of environmental bacteria and shows that multiple lineages are maintained, implying that large-scale clonal sweeps may take hundreds of years or more in these species.  相似文献   
46.
Transgenic Research - Transgenic crops have been the recipient of strong support as well as vigorously opposed opinions since their appearance. In any case, their growth throughout the world has...  相似文献   
47.
The very large family of Formin proteins is involved in processes such as morphogenesis, embryonic differentiation, cell polarity, and cytokinesis. A novel human gene from the Formin family, denominated human leukocyte formin gene, was cloned. The cDNA of the gene was determined to be 3959bp long with an open reading frame of 3302bp and computational analysis located this gene on chromosome 17, suggesting that it is composed of 27 exons. Northern blot analysis revealed a restricted expression of mRNA in the thymus, spleen, and peripheral blood leukocytes in normal human tissues. Western blot analysis demonstrated that the protein encoded by this gene is overexpressed in lymphoid malignancies; cancer cell lines and peripheral blood leukocyte from chronic lymphocytic leukemia (CLL) patients. Furthermore, the human leukocyte formin protein was observed to associate with Akt, a critical survival regulator in many different cell types.  相似文献   
48.
Pulmonary Arterial Hypertension (PAH) is a progressive devastating disease characterized by excessive proliferation of the Pulmonary Arterial Smooth Muscle Cells (PASMCs). Studies suggest that PAH and cancers share an apoptosis-resistant state featuring excessive cell proliferation. MicroRNA-206 (miR-206) is known to regulate proliferation and is implicated in various types of cancers. However, the role of miR-206 in PAH has not been studied. In this study, it is hypothesized that miR-206 could play a role in the proliferation of PASMCs. In the present study, the expression patterns of miR-206 were investigated in normal and hypertensive mouse PASMCs. The effects of miR-206 in modulating cell proliferation, apoptosis and smooth muscle cell markers in human pulmonary artery smooth muscle cells (hPASMCs) were investigated in vitro. miR-206 expression in mouse PASMCs was correlated with an increase in right ventricular systolic pressure. Reduction of miR-206 levels in hPASMCs causes increased proliferation and reduced apoptosis and these effects were reversed by the overexpression of miR-206. miR-206 over expression also increased the levels of smooth muscle cell differentiation markers α-smooth muscle actin and calponin implicating its importance in the differentiation of SMCs. miR-206 overexpression down regulated Notch-3 expression, which is key a factor in PAH development. These results suggest that miR-206 is a potential regulator of proliferation, apoptosis and differentiation of PASMCs, and that it could be used as a novel treatment strategy in PAH.  相似文献   
49.
Plants are attractive expression systems for the economic production of recombinant proteins. Among the different plant-based systems, plant seed is the leading platform and holds several advantages such as high protein yields and stable storage of target proteins. Significant advances in using seeds as bioreactors have occurred in the past decade, which include the first commercialized plant-derived recombinant protein. Here we review the current progress on seeds as bioreactors, with focus on the different food crops as production platforms and comprehensive strategies in optimizing recombinant protein production in seeds.  相似文献   
50.
Assembly of a bipolar mitotic spindle requires the action of class 5 kinesins, and inhibition or depletion of this motor results in mitotic arrest and apoptosis. S-Trityl-l-cysteine is an allosteric inhibitor of vertebrate Kinesin Spindle Protein (KSP) that has generated considerable interest due to its anti-cancer properties, however, poor pharmacological properties have limited the use of this compound. We have modified the triphenylmethyl and cysteine groups, guided by biochemical and cell-based assays, to yield new cysteinol and cysteamine derivatives with increased inhibitory activity, greater efficacy in model systems, and significantly enhanced potency against the NCI60 tumor panel. These results reveal a promising new class of conformationally-flexible small molecules as allosteric KSP inhibitors for use as research tools, with activities that provide impetus for further development as anti-tumor agents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号