首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7354篇
  免费   690篇
  国内免费   6篇
  2023年   44篇
  2022年   70篇
  2021年   232篇
  2020年   154篇
  2019年   184篇
  2018年   184篇
  2017年   158篇
  2016年   210篇
  2015年   359篇
  2014年   384篇
  2013年   471篇
  2012年   552篇
  2011年   548篇
  2010年   323篇
  2009年   289篇
  2008年   381篇
  2007年   394篇
  2006年   329篇
  2005年   339篇
  2004年   317篇
  2003年   281篇
  2002年   273篇
  2001年   68篇
  2000年   45篇
  1999年   66篇
  1998年   83篇
  1997年   41篇
  1996年   33篇
  1995年   36篇
  1994年   31篇
  1993年   42篇
  1992年   44篇
  1991年   31篇
  1990年   31篇
  1989年   40篇
  1988年   29篇
  1987年   37篇
  1986年   33篇
  1985年   28篇
  1984年   36篇
  1982年   43篇
  1981年   44篇
  1980年   42篇
  1979年   23篇
  1978年   39篇
  1977年   29篇
  1976年   23篇
  1975年   34篇
  1974年   30篇
  1973年   29篇
排序方式: 共有8050条查询结果,搜索用时 390 毫秒
941.
tert-Butoxy-(4-phenyl-quinolin-3-yl)-acetic acids (tBPQA) are a new class of HIV-1 integrase (IN) inhibitors that are structurally distinct from IN strand transfer inhibitors but analogous to LEDGINs. LEDGINs are a class of potent antiviral compounds that interacts with the lens epithelium-derived growth factor (LEDGF) binding pocket on IN and were identified through competition binding against LEDGF. LEDGF tethers IN to the host chromatin and enables targeted integration of viral DNA. The prevailing understanding of the antiviral mechanism of LEDGINs is that they inhibit LEDGF binding to IN, which prevents targeted integration of HIV-1. We showed that in addition to the properties already known for LEDGINs, the binding of tBPQAs to the IN dimer interface inhibits IN enzymatic activity in a LEDGF-independent manner. Using the analysis of two long terminal repeat junctions in HIV-infected cells, we showed that the inhibition by tBPQAs occurs at or prior to the viral DNA 3'-processing step. Biochemical studies revealed that this inhibition operates by compound-induced conformational changes in the IN dimer that prevent proper assembly of IN onto viral DNA. For the first time, tBPQAs were demonstrated to be allosteric inhibitors of HIV-1 IN displaying a dual mode of action: inhibition of IN-viral DNA assembly and inhibition of IN-LEDGF interaction.  相似文献   
942.
ΔN123-glucan-binding domain-catalytic domain 2 (ΔN123-GBD-CD2) is a truncated form of the bifunctional glucansucrase DSR-E from Leuconostoc mesenteroides NRRL B-1299. It was constructed by rational truncation of GBD-CD2, which harbors the second catalytic domain of DSR-E. Like GBD-CD2, this variant displays α-(1→2) branching activity when incubated with sucrose as glucosyl donor and (oligo-)dextran as acceptor, transferring glucosyl residues to the acceptor via a ping-pong bi-bi mechanism. This allows the formation of prebiotic molecules containing controlled amounts of α-(1→2) linkages. The crystal structure of the apo α-(1→2) branching sucrase ΔN123-GBD-CD2 was solved at 1.90 Å resolution. The protein adopts the unusual U-shape fold organized in five distinct domains, also found in GTF180-ΔN and GTF-SI glucansucrases of glycoside hydrolase family 70. Residues forming subsite −1, involved in binding the glucosyl residue of sucrose and catalysis, are strictly conserved in both GTF180-ΔN and ΔN123-GBD-CD2. Subsite +1 analysis revealed three residues (Ala-2249, Gly-2250, and Phe-2214) that are specific to ΔN123-GBD-CD2. Mutation of these residues to the corresponding residues found in GTF180-ΔN showed that Ala-2249 and Gly-2250 are not directly involved in substrate binding and regiospecificity. In contrast, mutant F2214N had lost its ability to branch dextran, although it was still active on sucrose alone. Furthermore, three loops belonging to domains A and B at the upper part of the catalytic gorge are also specific to ΔN123-GBD-CD2. These distinguishing features are also proposed to be involved in the correct positioning of dextran acceptor molecules allowing the formation of α-(1→2) branches.  相似文献   
943.
Integrin α1β1 binding to collagen IV, which is mediated by the α1-inserted (I) domain, down-regulates collagen synthesis. When unligated, a salt bridge between Arg287 and Glu317 is thought to keep this domain in a low affinity conformation. Ligand binding opens the salt bridge leading to a high-affinity conformation. How modulating integrin α1β1 affinity alters collagen homeostasis is unknown. To address this question, we utilized a thermolysin-derived product of the α1α2α1 network of collagen IV (α1α2α1(IV) truncated protomer) that selectively binds integrin α1β1. We show that an E317A substitution enhanced binding to the truncated protomer, consistent with a previous finding that this substitution eliminates the salt bridge. Surprisingly, we show that an R287A substitution did not alter binding, whereas R287E/E317R substitutions enhanced binding to the truncated protomer. NMR spectroscopy and molecular modeling suggested that eliminating the Glu317 negative charge is sufficient to induce a conformational change toward the open state. Thus, the role played by Glu317 is largely independent of the salt bridge. We further show that cells expressing E317A or R287E/E317R substitutions have enhanced down-regulation of collagen IV synthesis, which is mediated by the ERK/MAPK pathway. In conclusion, we have demonstrated that modulating the affinity of the extracellular α1 I domain to collagen IV enhances outside-in signaling by potentiating ERK activation and enhancing the down-regulation of collagen synthesis.  相似文献   
944.
One of the most recognised and studied family of peptide hormones is the insulin superfamily. Within this family is the relaxin subfamily which comprises seven members: relaxin-1, -2 and -3 and insulin-like peptides 3, 4, 5 and 6. Besides exhibiting sequence similarities, each member exists as an active A-B heterodimer linked by three disulfide bonds. This mini-review is divided into three broad themes: an overview of all insulin superfamily members (including structural similarities); roles of each superfamily member and finally, a focus on the pleiotropic peptide hormone, human relaxin-2. In addition to promoting vasodilatory effects leading to evaluation in Phase III clinical trials for the treatment of acute heart failure, relaxin has recently been shown to be highly expressed by cancer cells, aiding in their proliferation, invasiveness and metastasis. These contrary effects of relaxin are discussed together with current efforts in the development of relaxin antagonists that may possess future therapeutic potential for the treatment of certain cancers.  相似文献   
945.
BMP activity is essential for many steps of neural development, including the initial role in neural induction and the control of progenitor identities along the dorsal-ventral axis of the neural tube. Taking advantage of chick in ovo electroporation, we show a novel role for BMP7 at the time of neurogenesis initiation in the spinal cord. Using in vivo loss-of-function experiments, we show that BMP7 activity is required for the generation of three discrete subpopulations of dorsal interneurons: dI1-dI3-dI5. Analysis of the BMP7 mouse mutant shows the conservation of this activity in mammals. Furthermore, this BMP7 activity appears to be mediated by the canonical Smad pathway, as we demonstrate that Smad1 and Smad5 activities are similarly required for the generation of dI1-dI3-dI5. Moreover, we show that this role is independent of the patterned expression of progenitor proteins in the dorsal spinal cord, but depends on the BMP/Smad regulation of specific proneural proteins, thus narrowing this BMP7 activity to the time of neurogenesis. Together, these data establish a novel role for BMP7 in primary neurogenesis, the process by which a neural progenitor exits the cell cycle and enters the terminal differentiation pathway.  相似文献   
946.
947.
948.
A new near-infrared fluorescent compound containing two cyclic RGD motifs, cypate-[c(RGDfK)](2) (1), was synthesized based on a carbocyanine fluorophore bearing two carboxylic acid groups (cypate) for integrin α(v)β(3)-targeting. Compared with its monovalent counterpart cypate-c(RGDfK) (2), 1 exhibited remarkable improvements in integrin α(v)β(3) binding affinity and tumor uptake in nude mice of A549. The results suggest that cypate-linked divalent ligands can serve as an important molecular platform for exploring receptor-targeted optical imaging and treatment of various diseases.  相似文献   
949.
Discovery of a novel nor-seco himbacine analog as potent thrombin receptor (PAR-1) antagonist is described. Despite low plasma level, these new analogs showed excellent ex vivo efficacy in the monkey platelet aggregation assay. A potent hydroxy metabolite generated in vivo was identified as the agent responsible for the ex vivo efficacy. Following this discovery, the metabolite series was optimized to obtain analogs that showed very good ex vivo efficacy along with excellent pharmacokinetic profile in c. monkey.  相似文献   
950.
A series of α7 nicotinic acetylcholine receptor full-agonists with a 1,3,4-oxadiazol-2-amine core has been discovered. Systematic exploration of the structure-activity relationships for both α7 potency and selectivity with respect to interaction with the hERG channel are described. Further profiling led to the identification of compound 22, a potent full agonist showing efficacy in the novel object recognition model of cognition enhancement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号