首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7384篇
  免费   684篇
  国内免费   6篇
  8074篇
  2023年   51篇
  2022年   116篇
  2021年   232篇
  2020年   153篇
  2019年   183篇
  2018年   180篇
  2017年   157篇
  2016年   210篇
  2015年   355篇
  2014年   380篇
  2013年   462篇
  2012年   549篇
  2011年   543篇
  2010年   321篇
  2009年   290篇
  2008年   380篇
  2007年   391篇
  2006年   330篇
  2005年   337篇
  2004年   315篇
  2003年   281篇
  2002年   272篇
  2001年   67篇
  2000年   43篇
  1999年   64篇
  1998年   83篇
  1997年   39篇
  1996年   33篇
  1995年   39篇
  1994年   30篇
  1993年   46篇
  1992年   46篇
  1991年   31篇
  1990年   31篇
  1989年   40篇
  1988年   29篇
  1987年   37篇
  1986年   34篇
  1985年   29篇
  1984年   36篇
  1983年   25篇
  1982年   43篇
  1981年   44篇
  1980年   42篇
  1979年   24篇
  1978年   39篇
  1977年   30篇
  1975年   33篇
  1974年   30篇
  1973年   29篇
排序方式: 共有8074条查询结果,搜索用时 15 毫秒
111.
112.
113.
We report a novel activatable NIR fluorescent probe for in vivo detection of cancer-related matrix metalloproteinase (MMP) activity. The probe is based on a triple-helical peptide substrate (THP) with high specificity for MMP-2 and MMP-9 relative to other members of the MMP family. MMP-2 and MMP-9 (also known as gelatinases) are specifically associated with cancer cell invasion and cancer-related angiogenesis. At the center of each 5 kDa peptide strand is a gelatinase sensitive sequence flanked by 2 Lys residues conjugated with NIR fluorescent dyes. Upon self-assembly of the triple-helical structure, the 3 peptide chains intertwine, bringing the fluorophores into close proximity and reducing fluorescence via quenching. Upon enzymatic cleavage of the triple-helical peptide, 6 labeled peptide chains are released, resulting in an amplified fluorescent signal. The fluorescence yield of the probe increases 3.8-fold upon activation. Kinetic analysis showed a rate of LS276-THP hydrolysis by MMP-2 (k(cat)/K(M) = 30,000 s(-1) M(-1)) similar to that of MMP-2 catalysis of an analogous fluorogenic THP. Administration of LS276-THP to mice bearing a human fibrosarcoma xenografted tumor resulted in a tumor fluorescence signal more than 5-fold greater than that of muscle. This signal enhancement was reduced by treatment with the MMP inhibitor Ilomostat, indicating that the observed tumor fluorescence was indeed enzyme mediated. These results are the first to demonstrate that triple-helical peptides are suitable for highly specific in vivo detection of tumor-related MMP-2 and MMP-9 activity.  相似文献   
114.
The levels of total of IgG, IgG1, IgG2, IgG3 and IgG4 were evaluated in 54 patients with chronic paracoccidioidomycosis (PCM) before, during and after treatment using an enzyme-linked immunosorbent assay with Mexo and recombinant Pb27 (rPb27) as the antigens. Mexo was effective in distinguishing PCM patients from individuals in the negative control group (NC) based on total IgG and rPb27 performed worse than Mexo when these two groups were compared. IgG1, IgG2, IgG3 and IgG4 could not be used to clearly distinguish PCM patients from those in the NC group using either antigen. There was no clear relationship between antibody levels and the period of treatment. The majority of patients presented with decreased antibody levels during treatment, with no statistically significant differences among the different periods of treatment. Only IgG4 presented a negative correlation between its levels and clinical improvement during treatment. In total, 65% of untreated PCM patients showed reactivity against IgG4 when the Mexo antigen was used and this reactivity decreased over the course of treatment. There was a tendency towards decreasing antibody levels during treatment, but these antibody levels did not necessarily clear after the treatment was stopped. Mexo was useful for PCM diagnosis using total IgG; however, more studies are necessary before this antigen can be used in measuring the levels of total IgG and its subclasses for monitoring patients during treatment.  相似文献   
115.
116.
Nitrosylation is a reversible post-translational modification of protein cysteines playing a major role in cellular regulation and signaling in many organisms, including plants where it has been implicated in the regulation of immunity and cell death. The extent of nitrosylation of a given cysteine residue is governed by the equilibrium between nitrosylation and denitrosylation reactions. The mechanisms of these reactions remain poorly studied in plants. In this study, we have employed glycolytic GAPDH from Arabidopsis thaliana as a tool to investigate the molecular mechanisms of nitrosylation and denitrosylation using a combination of approaches, including activity assays, the biotin switch technique, site-directed mutagenesis, and mass spectrometry. Arabidopsis GAPDH activity was reversibly inhibited by nitrosylation of catalytic Cys-149 mediated either chemically with a strong NO donor or by trans-nitrosylation with GSNO. GSNO was found to trigger both GAPDH nitrosylation and glutathionylation, although nitrosylation was widely prominent. Arabidopsis GAPDH was found to be denitrosylated by GSH but not by plant cytoplasmic thioredoxins. GSH fully converted nitrosylated GAPDH to the reduced, active enzyme, without forming any glutathionylated GAPDH. Thus, we found that nitrosylation of GAPDH is not a step toward formation of the more stable glutathionylated enzyme. GSH-dependent denitrosylation of GAPC1 was found to be linked to the [GSH]/[GSNO] ratio and to be independent of the [GSH]/[GSSG] ratio. The possible importance of these biochemical properties for the regulation of Arabidopsis GAPDH functions in vivo is discussed.  相似文献   
117.
Transferrins, found in invertebrates and vertebrates, form a physiologically important family of proteins playing a major role in iron acquisition and transport, defense against microbial pathogens, growth and differentiation. These proteins are bilobal in structure and each lobe is composed of two domains divided by a cleft harboring an iron atom. Vertebrate transferrins comprise of serotransferrins, lactoferrins and ovotransferrins. In mammals serotransferrins transport iron in physiological fluids and deliver it to cells, while lactoferrins scavenge iron, limiting its availability to invading microbes. In oviparous vertebrates there is only one transferrin gene, expressed either in the liver to be delivered to physiological fluids as serotransferrin, or in the oviduct with a final localization in egg white as ovotransferrin. Being products of one gene sero- and ovotransferrin are identical at the amino-acid sequence level but with different, cell specific glycosylation patterns. Our knowledge of the mechanisms of transferrin iron binding and release is based on sequence and structural data obtained for human serotransferrin and hen and duck ovotransferrins. No sequence information about other ovotransferrins was available until our recent publication of turkey, ostrich, and red-eared turtle (TtrF) ovotransferrin mRNA sequences [Ciuraszkiewicz, J., Olczak, M., Watorek, W., 2006. Isolation, cloning and sequencing of transferrins from red-eared turtle, African ostrich and turkey. Comp. Biochem. Physiol. 143 B, 301-310]. In the present paper, ten new reptilian mRNA transferrin sequences obtained from the Nile crocodile (NtrF), bearded dragon (BtrF), Cuban brown anole (AtrF), veiled and Mediterranean chameleons (VtrF and KtrF), sand lizard (StrF), leopard gecko (LtrF), Burmese python (PtrF), African house snake (HtrF), and grass snake (GtrF) are presented and analyzed. Nile crocodile and red-eared turtle transferrins have a disulphide bridge pattern identical to known bird homologues. A partially different disulphide bridge pattern was found in the Squamata (snakes and lizards). The possibility of a unique interdomain disulphide bridge was predicted for LtrF. Differences were found in iron-binding centers from those of previously known transferrins. Substitutions were found in the iron-chelating residues of StrF and TtrF and in the synergistic anion-binding residues of NtrF. In snakes, the transferrin (PtrF, HtrF and GtrF) N-lobe "dilysine trigger" occurring in all other known transferrins was not found, which indicates a different mechanism of iron release.  相似文献   
118.
The recent increase in corn ethanol production has drawn attention to the environmental sustainability of biofuel production. Environmental assessments of second‐generation biofuel crops (SGBC) have focused primarily on greenhouse gas emissions and water quality. However, expanding the production of cellulosic biomass resources, especially those that require dedicated agricultural land, is also likely to have impacts on biodiversity. We developed an optimization framework for projecting the spatial pattern of SGBC expansion in the United States and intersected these predictions with occurrence data for at‐risk species. In particular, we focused on two candidate perennial grass feedstocks, Panicum virgatum (switchgrass), and Miscanthus × giganteus (Miscanthus). Tradeoffs between biodiversity and economic profitability are assessed using county level data sets of SGBC yield, agricultural land availability, land rents, and at‐risk species occurrences. Results show that future SGBC expansion is likely to occur outside of the Corn Belt, where conventional biofuel feedstocks are currently grown. The set of at‐risk species that could potentially be impacted is therefore likely to be different from the at‐risk species prevalent in the agroecological landscapes of the Upper Midwest that are dominated by corn and soy production. The total number and type of potentially impacted taxa is influenced by several factors, including the total demand for cellulosic biomass, the type of agricultural land used for production, and the method for defining at‐risk species. SGBC production is also concentrated in fewer counties when a national species conservation constraint is combined with a biofuel production mandate. This analysis provides a foundation for future research on species conservation in bioenergy production landscapes and highlights the importance of incorporating biodiversity into broader environmental assessments of biofuel sustainability.  相似文献   
119.
Chan LL  Lo SC  Hodgkiss IJ 《Proteomics》2002,2(9):1169-1186
A comprehensive study to find the optimal sample preparation conditions for two-dimensional electrophoresis (2-DE) analysis of Prorocentrum triestinum, a model causative agent of harmful algal blooms (HABs) was carried out. The four major sample preparation steps for 2-DE: (a) cell disruption: i.e. sonication and homogenization with glass beads; (b) protein extraction : i.e. sequential and independent extraction procedures; (c) pre-electrophoretic treatment: these included (i) treatment with RNAase/DNAase or benzonase; (ii) ultracentrifugation to sediment large macromolecules such as DNA; (iii) desalting and concentration by ultrafiltration through a Microcon centrifugal filter device (MWCO: 3000 daltons); and (iv) desalting by a micro BioSpin chromatography column (MWCO: 6000 daltons); and (d) rehydration buffers, reducing agents and sample application in the first dimension isoelectric focussing were studied. Our results showed that sonication is easy to perform and resulted in a higher protein yield. Among the four extraction buffers, the urea containing buffers resulted in the extraction of the highest amount of protein while tris(hydroxymethyl)aminomethane buffers and trichloroacetic acid (TCA)/acetone precipitation allowed detection of a higher number of protein species (i.e. protein spots). Desalting by BioSpin and ultrafiltration have improved the 2-DE resolution of the water soluble fraction but have less effect on urea containing fractions. TCA/acetone precipitation was able to desalt all protein fractions independent of the extraction media, however extended exposure to this low pH medium has caused protein modification. Introduction of either DNase/RNase or benzonase treatment did not improve the discriminatory power of the 2-DE but this treatment did yield 2-DE with the clearest background. Proteolytic digestion was inhibited by addition of a protease inhibitor cocktail. Taken overall, a combination of sequential extraction and desalting by BioSpin chromatography for sample treatment before first dimension of 2-DE gave best results based on its simplicity and minimal protein loss. Finally, triscarboxyethylphosphine (TCEP) has performed well as a reducing agent in both the rehydration and equilibration buffers. The rehydration buffer found to be best in this study was 8.0 M urea, 2% 3-[(3-cholamidoprphyldimethylamino]-1-propanesulfonate, 4 mM TCEP and 1% immobilized pH gradient buffer. Subsequently, we applied this finding and performed 2-DE analysis on the soluble protein fractions extracted from light-starved cultured algal cells (nonblooming) and cultured cells grown under optimal conditions (blooming). 2-DE maps of these algal cultures were visibly different and many differentially expressed proteins were found.  相似文献   
120.
A family of nine Salmonella typhimurium type III secretion effectors with a conserved amino-terminus have been defined. Three family members (SifA, SifB and SseJ) have previously been demonstrated to localize to the Salmonella-containing vacuole and to Salmonella-induced filaments. In contrast, we demonstrate that two other family members, SspH2 and SseI, co-localized with the polymerizing actin cytoskeleton. These proteins also interacted with the mammalian actin cross-linking protein filamin in the yeast two-hybrid assay through their highly conserved amino-terminal domains. This amino-terminus was sufficient to direct localization to the polymerizing actin cytoskeleton, suggesting that the interaction with filamin is important for this subcellular localization. In addition, SspH2 co-localized with vacuole-associated actin polymerizations (VAP) induced by intracellular bacteria through the Salmonella pathogenicity island (SPI)-2 type III secretion system (TTSS). SspH2 interacted with the actin-binding protein profilin in the yeast two-hybrid assay and by affinity chromatography. This interaction was highly specific to SspH2 and was mediated by its carboxy-terminus. Furthermore, SspH2 inhibited the rate of actin polymerization in vitro, suggesting that it functions to reduce or remodel VAP. Strains with mutations in sspH2 and sseI retained the ability to form VAP. However, a third intracellular virulence factor, spvB, which ADP-ribosylates actin, strongly inhibited VAP formation in HeLa cells, suggesting a more subtle effect for SspH2 and SseI on the actin cytoskeleton.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号