首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   1篇
  134篇
  2021年   1篇
  2020年   3篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   4篇
  2015年   4篇
  2013年   3篇
  2012年   2篇
  2011年   5篇
  2010年   4篇
  2009年   3篇
  2008年   6篇
  2007年   4篇
  2006年   1篇
  2005年   7篇
  2004年   2篇
  2003年   5篇
  2002年   5篇
  2001年   3篇
  1999年   4篇
  1995年   1篇
  1992年   2篇
  1991年   4篇
  1990年   3篇
  1989年   3篇
  1988年   1篇
  1987年   3篇
  1986年   3篇
  1985年   1篇
  1984年   3篇
  1983年   5篇
  1982年   1篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
  1975年   4篇
  1974年   2篇
  1973年   1篇
  1972年   2篇
  1971年   3篇
  1970年   3篇
  1968年   1篇
  1967年   1篇
  1966年   3篇
  1965年   4篇
排序方式: 共有134条查询结果,搜索用时 15 毫秒
81.
Venom of the yellow sac spider Cheiracanthium punctorium (Miturgidae) was found unique in terms of molecular composition. Its principal toxic component CpTx 1 (15.1 kDa) was purified, and its full amino acid sequence (134 residues) was established by protein chemistry and mass spectrometry techniques. CpTx 1 represents a novel class of spider toxin with modular architecture. It consists of two different yet homologous domains (modules) each containing a putative inhibitor cystine knot motif, characteristic of the widespread single domain spider neurotoxins. Venom gland cDNA sequencing provided precursor protein (prepropeptide) structures of three CpTx 1 isoforms (a–c) that differ by single residue substitutions. The toxin possesses potent insecticidal (paralytic and lethal), cytotoxic, and membrane-damaging activities. In both fly and frog neuromuscular preparations, it causes stable and irreversible depolarization of muscle fibers leading to contracture. This effect appears to be receptor-independent and is inhibited by high concentrations of divalent cations. CpTx 1 lyses cell membranes, as visualized by confocal microscopy, and destabilizes artificial membranes in a manner reminiscent of other membrane-active peptides by causing numerous defects of variable conductance and leading to bilayer rupture. The newly discovered class of modular polypeptides enhances our knowledge of the toxin universe.  相似文献   
82.
New data on the cross-reacting antigen of N. meningitidis, serogroup A, are presented. A complex of antigens has been isolated by treatment with tryptone X-100, ethanol precipitation and the subsequent treatment with trichloroacetic acid. The immunological analysis of the isolated preparation has shown that the proteinaceous part of the biopolymer contains 7 polypeptide fragments; of these, one fragment with a molecular weight of 31000 daltons has been found to constitute 49, 15% of all polypeptide fragments. The evaluation of the serological properties of this preparation in the precipitation test and the passive hemagglutination test has revealed that the preparation contains various cross-reactive antigenic determinants. Polyvalent erythrocyte diagnosticum obtained on the basis of this preparation permits the detection of antibodies to meningococci irrespective of their serogroup.  相似文献   
83.
84.
85.
A unique 30-residue cationic peptide oxyopinin 4a (Oxt 4a) was identified in the venom of the lynx spider Oxyopes takobius (Oxyopidae). Oxt 4a contains a single N-terminally located disulfide bond, Cys4-Cys10, and is structurally different from any spider toxin studied so far. According to NMR findings, the peptide is disordered in water, but assumes a peculiar torpedo-like structure in detergent micelles. It features a C-terminal amphipathic α-helical segment (body; residues 12-25) and an N-terminal disulfide-stabilized loop (head; residues 1-11), and has an unusually high density of positive charge in the head region. Synthetic Oxt 4a was produced and shown to possess strong and broad-spectrum cytolytic and antimicrobial activity. cDNA cloning showed that the peptide is synthesized in the form of a conventional prepropeptide with an acidic prosequence. Unlike other arachnid toxins, Oxt 4a exhibits striking similarity with defense peptides from the skin of ranid frogs that contain the so-called Rana-box motif (a C-terminal disulfide-enclosed loop). Parallelism or convergence is apparent on several levels: the structure, function and biosynthesis of a lynx spider toxin are mirrored by those of Rana-box peptides from frogs.  相似文献   
86.
87.
88.
The stereo-specific l-isoleucine-4-hydroxylase (l-isoleucine dioxygenase (IDO)) was cloned and expressed in an Escherichia coli 2Δ strain lacking the activities of α-ketoglutarate dehydrogenase (EC 1.2.4.2), isocitrate liase (EC 4.1.3.1), and isocitrate dehydrogenase kinase/phosphatase (EC 2.7.11.5). The 2Δ strain could not grow in a minimal-salt/glucose/glycerol medium due to the blockage of TCA during succinate synthesis. The IDO activity in the 2Δ strain was able to “shunt” destroyed TCA, thereby coupling l-isoleucine hydroxylation and cell growth. Using this strain, we performed the direct biotransformation of l-isoleucine into 4-HIL with an 82% yield.  相似文献   
89.
The kinetics, efficiency, and specificity of induction of forward mutations to auxotrophy by ultraviolet light (UV) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was examined in stationary phase cells of Rhodosporidium (Rhodotorula) wild strain Rg1. In comparison to the spontaneous level the frequency of auxotrophic mutants was increased more than 1000 times by both mutagens, however, the mutagenic efficiency of MNNG was higher than that of UV. We found that the forward mutation rate is a linear function of the applicated UV and MNNG doses in the range to 600 J m-2 or 25 mM X min, respectively. The 35 studied biosynthetic pathways to amino acids, purines, pyrimidines, and vitamins are genetically blocked at different frequencies, but there is not any significant difference between UV and MNNG induced frequencies of mutants with a specific requirement. However, in difference to the approximately equal distribution of the MNNG-induced nic mutants among the genetic blocks of the tryptophan-nicotinamide pathway, UV-induced nic mutants occurred with a higher frequency in the genes of the tryptophan pyrrolase and the 3-hydroxykynureninase than in the genes of the other enzymes of the pathway.  相似文献   
90.
Given the diversity of autophagy targets and regulation, it is important to characterize autophagy in various cell types and conditions. We used a primary myocyte cell culture system to assay the role of putative autophagy regulators in the specific context of skeletal muscle. By treating the cultures with rapamycin (Rap) and chloroquine (CQ) we induced an autophagic response, fully suppressible by knockdown of core ATG genes. We screened D. melanogaster orthologs of a previously reported mammalian autophagy protein-protein interaction network, identifying several proteins required for autophagosome formation in muscle cells, including orthologs of the Rab regulators RabGap1 and Rab3Gap1. The screen also highlighted the critical roles of the proteasome and glycogen metabolism in regulating autophagy. Specifically, sustained proteasome inhibition inhibited autophagosome formation both in primary culture and larval skeletal muscle, even though autophagy normally acts to suppress ubiquitin aggregate formation in these tissues. In addition, analyses of glycogen metabolic genes in both primary cultured and larval muscles indicated that glycogen storage enhances the autophagic response to starvation, an important insight given the link between glycogen storage disorders, autophagy, and muscle function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号