首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1130篇
  免费   104篇
  国内免费   2篇
  2023年   6篇
  2022年   18篇
  2021年   30篇
  2020年   17篇
  2019年   21篇
  2018年   29篇
  2017年   18篇
  2016年   34篇
  2015年   49篇
  2014年   42篇
  2013年   62篇
  2012年   87篇
  2011年   66篇
  2010年   43篇
  2009年   36篇
  2008年   47篇
  2007年   50篇
  2006年   35篇
  2005年   51篇
  2004年   44篇
  2003年   39篇
  2002年   34篇
  2001年   23篇
  2000年   30篇
  1999年   20篇
  1998年   11篇
  1997年   11篇
  1996年   15篇
  1995年   12篇
  1994年   11篇
  1993年   10篇
  1992年   15篇
  1991年   13篇
  1990年   18篇
  1989年   14篇
  1988年   6篇
  1987年   7篇
  1986年   9篇
  1985年   21篇
  1984年   11篇
  1983年   9篇
  1982年   13篇
  1981年   10篇
  1979年   12篇
  1978年   9篇
  1977年   5篇
  1974年   9篇
  1971年   4篇
  1970年   6篇
  1949年   3篇
排序方式: 共有1236条查询结果,搜索用时 31 毫秒
951.
PRMT3, a protein arginine methyltransferase, has been shown to influence ribosomal biosynthesis by catalyzing the dimethylation of the 40S ribosomal protein S2. Although PRMT3 has been reported to be a cytosolic protein, it has been shown to methylate histone H4 peptide (H4 1-24) in?vitro. Here, we?report the identification of a PRMT3 inhibitor (1-(benzo[d][1,2,3]thiadiazol-6-yl)-3-(2-cyclohexenylethyl)urea; compound 1) with IC(50) value of 2.5?μM by screening a library of 16,000 compounds using H4 (1-24) peptide as a substrate. The crystal structure of PRMT3 in complex with compound 1 as well as kinetic analysis reveals an allosteric mechanism of inhibition. Mutating PRMT3 residues within the allosteric site or using compound 1 analogs that disrupt interactions with allosteric site residues both abrogated binding and inhibitory activity. These data demonstrate an allosteric mechanism for inhibition of protein arginine methyltransferases, an emerging class of therapeutic targets.  相似文献   
952.
Eight homoisoflavonoids, two of which are new: 3-(4′-methoxybenzyl)-5,6,7-trimethoxychroman-4-one (1); 3-(4′-methoxybenzyl)-5,7-dimethoxychroman-4-one (2); 3-(4′-methoxybenzyl)-7-hydroxy-5,6-dimethoxychroman-4-one (3); 3-(4′-methoxybenzyl)-6-hydroxy-5,7-dimethoxychroman-4-one (4); 3-(3′-hydroxy-4′-methoxybenzyl)-5,7-dihydroxy-6-methoxychroman-4-one (5); 3-(3′-hydroxy-4′-methoxybenzyl)-5,7-dihydroxychroman-4-one (6); 3-(4′-hydroxybenzylidene)-5,7-dihydroxy-6-methoxychroman-4-one (7) and 3-(4′-hydroxybenzylidene)-5,7-dihydroxychroman-4-one (8), were isolated from the yellow Inter-bulb deposits from Scilla nervosa. The structures of these compounds were elucidated and characterized by 1D- and 2D-NMR and mass spectrometry. The structures of the known compounds were compared to those ones in literature.  相似文献   
953.

Background

Identifying the immune correlates of reduced susceptibility to HIV remains a key goal for the HIV vaccine field, and individuals who are HIV-exposed, seronegative (HESN) may offer important clues. Reduced systemic immune activation has been described in HESN individuals. Conversely, pro-inflammatory T cell subsets, particularly CD4+ T cells producing the cytokine IL17 (Th17 cells), may represent a highly susceptible target for HIV infection after sexual exposure. Therefore, we characterized the cellular pro-inflammatory and IL17/IL22 cytokine immune milieu in the genital mucosa and blood of HESN female sex workers (FSWs).

Methods and Results

Blinded lab personnel characterized basal and mitogen-induced gene and cytokine immune responses in the cervix and blood of HESN FSWs (n = 116) and non-FSW controls (n = 17) using qPCR and ELISA. IL17 and IL22 production was significantly reduced in both the cervix and blood of HESNs, both in resting cells and after mitogen stimulation. In addition, HESN participants demonstrated blunted production of both pro-inflammatory cytokines and β-chemokines.

Discussion and Conclusions

We conclude that HIV exposure without infection was associated with blunted IL17/IL22 and pro-inflammatory responses, both systemically and at the site of mucosal HIV exposure. It will be important for further studies to examine the causal nature of the association and to define the cell subsets responsible for these differences.  相似文献   
954.
Wu JC  Go AC  Samson M  Cintra T  Mirsoian S  Wu TF  Jow MM  Routman EJ  Chu DS 《Genetics》2012,190(1):143-157
Sperm from different species have evolved distinctive motility structures, including tubulin-based flagella in mammals and major sperm protein (MSP)-based pseudopods in nematodes. Despite such divergence, we show that sperm-specific PP1 phosphatases, which are required for male fertility in mouse, function in multiple processes in the development and motility of Caenorhabditis elegans amoeboid sperm. We used live-imaging analysis to show the PP1 phosphatases GSP-3 and GSP-4 (GSP-3/4) are required to partition chromosomes during sperm meiosis. Postmeiosis, tracking fluorescently labeled sperm revealed that both male and hermaphrodite sperm lacking GSP-3/4 are immotile. Genetic and in vitro activation assays show lack of GSP-3/4 causes defects in pseudopod development and the rate of pseudopodial treadmilling. Further, GSP-3/4 are required for the localization dynamics of MSP. GSP-3/4 shift localization in concert with MSP from fibrous bodies that sequester MSP at the base of the pseudopod, where directed MSP disassembly facilitates pseudopod contraction. Consistent with a role for GSP-3/4 as a spatial regulator of MSP disassembly, MSP is mislocalized in sperm lacking GSP-3/4. Although a requirement for PP1 phosphatases in nematode and mammalian sperm suggests evolutionary conservation, we show PP1s have independently evolved sperm-specific paralogs in separate lineages. Thus PP1 phosphatases are highly adaptable and employed across a broad range of sexually reproducing species to regulate male fertility.  相似文献   
955.
956.

Background

The pro-fibrogenic cytokine connective tissue growth factor (CTGF) plays an important role in the development and progression of fibrosis in many organ systems, including liver. However, its role in the pathogenesis of hepatitis C virus (HCV)-induced liver fibrosis remains unclear.

Methods

In the present study, we assessed CTGF expression in HCV-infected hepatocytes using replicon cells containing full-length HCV genotype 1 and the infectious HCV clone JFH1 (HCV genotype 2) by real-time PCR, Western blot analysis and confocal microscopy. We evaluated transforming growth factor β1 (TGF-β1) as a key upstream mediator of CTGF production using neutralizing antibodies and shRNAs. We also determined the signaling molecules involved in CTGF production using various immunological techniques.

Results

We demonstrated an enhanced expression of CTGF in two independent models of HCV infection. We also demonstrated that HCV induced CTGF expression in a TGF-β1-dependent manner. Further dissection of the molecular mechanisms revealed that CTGF production was mediated through sequential activation of MAPkinase and Smad-dependent pathways. Finally, to determine whether CTGF regulates fibrosis, we showed that shRNA-mediated knock-down of CTGF resulted in reduced expression of fibrotic markers in HCV replicon cells.

Conclusion

Our studies demonstrate a central role for CTGF expression in HCV-induced liver fibrosis and highlight the potential value of developing CTGF-based anti-fibrotic therapies to counter HCV-induced liver damage.  相似文献   
957.
958.
959.
The power conversion efficiency of poly(N‐(2‐ethylhexyl)‐3,6‐bis(4‐dodecyloxythiophen‐2‐yl)phthalimide) (PhBTEH)/fullerene bulk heterojunction solar cells improves from 0.43 to 4.1% by using a processing additive. The underlying mechanism for the almost 10‐fold enhancement in solar cell performance is found to be inhibition of fullerene intercalation into the polymer side chains and regulation of the relative crystallization/aggregation rates of the polymer and fullerene. An optimal interconnected two‐phase morphology with 15–20 nm domains is obtained when a processing additive is used compared with 100–300 nm domains without the additive. The results demonstrate that a processing additive provides an effective means of controlling both the fullerene intercalation in polymer/fullerene blends and the domain sizes of their phase‐separated nanoscale morphology.  相似文献   
960.
The purpose of this study was to (1) compare three different techniques for ferumoxide labeling of mesenchymal stem cells (MSCs), (2) evaluate if ferumoxide labeling allows in vivo tracking of matrix-associated stem cell implants (MASIs) in an animal model, and (3) compare the magnetic resonance imaging (MRI) characteristics of ferumoxide-labeled viable and apoptotic MSCs. MSCs labeled with ferumoxide by simple incubation, protamine transfection, or Lipofectin transfection were evaluated with MRI and histopathology. Ferumoxide-labeled and unlabeled viable and apoptotic MSCs in osteochondral defects of rat knee joints were evaluated over 12 weeks with MRI. Signal to noise ratios (SNRs) of viable and apoptotic labeled MASIs were tested for significant differences using t-tests. A simple incubation labeling protocol demonstrated the best compromise between significant magnetic resonance signal effects and preserved cell viability and potential for immediate clinical translation. Labeled viable and apoptotic MASIs did not show significant differences in SNR. Labeled viable but not apoptotic MSCs demonstrated an increasing area of T2 signal loss over time, which correlated to stem cell proliferation at the transplantation site. Histopathology confirmed successful engraftment of viable MSCs. The engraftment of iron oxide-labeled MASIs by simple incubation can be monitored over several weeks with MRI. Viable and apoptotic MASIs can be distinguished via imaging signs of cell proliferation at the transplantation site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号