首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   6篇
  93篇
  2022年   1篇
  2019年   1篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   4篇
  2013年   7篇
  2012年   9篇
  2011年   12篇
  2010年   4篇
  2009年   3篇
  2008年   6篇
  2007年   6篇
  2006年   6篇
  2005年   11篇
  2004年   2篇
  2003年   8篇
  2002年   4篇
  2000年   1篇
  1975年   1篇
排序方式: 共有93条查询结果,搜索用时 15 毫秒
81.
We conducted a series of tests to determine whether there is any association between tryptophan hydroxylase 1 (TPH1) and temperament in adulthood. In addition to testing for main effects, we investigated whether TPH1 gene variation modifies the influence of childhood environment on temperament in adulthood. The subjects were 341 healthy adults whose childhood environment was assessed by their mothers in 1980 and who self-rated their temperaments twice, in 1997 and 2001. We found no association between the TPH1 gene and temperament; however, among women, the TPH1 gene modified a relationship between adverse childhood environment and harm avoidance in adulthood. This finding was confirmed in the same sample in another test setting 4 years later. The presence of the A/A haplotype of the TPH1 intron 7 A218A and A779C polymorphism predicted a high level of adulthood harm avoidance in the presence of a hostile childhood environment as defined in terms of emotional rejection, maternal neglect and harsh and inconsistent discipline. In addition, the findings suggest a gene-environment correlation for novelty seeking in men.  相似文献   
82.
Activation of host cell antiviral responses is mediated by receptors detecting the presence of viruses. Here we have studied the role of double-stranded RNA (dsRNA) binding molecules melanoma differentiation-associated gene 5 (mda-5), retinoic acid inducible gene I (RIG-I), and Toll-like receptor 3 (TLR3) in measles virus (MV)-induced expression of antiviral cytokines and chemokines in human A549 lung epithelial cells and human umbilical vein endothelial cells (HUVECs). We show that MV infection results in the activation of mda-5, RIG-I, and TLR3 gene expression that is followed by high expression of interferon (IFN)-beta, interleukin (IL)-28 and IL-29, CCL5, and CXCL10 genes. We also demonstrate that IFN-alpha and IFN-beta upregulate mda-5, RIG-I, and TLR3 gene expression in epithelial and endothelial cell lines. Forced expression of mda-5, but not that of RIG-I or TLR3, leads to enhanced IFN-beta promoter activity in MV-infected A549 cells. Our results suggest that IFN-inducible mda-5 is involved in MV-induced expression of antiviral cytokines.  相似文献   
83.
Natural killer (NK) cells are important components of innate immune defense. NK cells kill virus-infected cells and secrete cytokines that are involved in activation of other immune cells. Macrophage-derived cytokines interferon-alpha (IFN-alpha) and interleukin-15 (IL-15) are in turn important activators of NK cells, but the receptors and intracellular pathways that are involved in NK cell functions are still incompletely known. Here we have used expression proteomics to find new IFN-alpha and IL-15 regulated proteins in human NK-92 cells, which have the characteristics of activated NK cells. Cells were stimulated with cytokines for 20 h, lysed, and soluble proteins were separated by two-dimensional electrophoresis, and differentially expressed protein spots were identified with mass spectrometry and database searches. A total of 57 protein spots were found to be reproducibly differentially expressed between control and cytokine stimulated gel pairs, 26 spots being more than 2-fold upregulated and 3 spots being at least 2-fold downregulated. The rest 28 spots showed minor, less than 2-fold changes in their expression levels after quantification. From the differentially expressed protein spots we identified 47 different proteins, most of which are new IFN-alpha and IL-15 target proteins. Interestingly, we show that e.g., adenylate kinase 2 is highly upregulated by IFN-alpha and IL-15 stimulation in NK-92 cells. The expression of selected genes with high expression level differences after cytokine stimulation were further studied at mRNA level. Northern blot analysis showed that the genes studied were induced by IFN-alpha, IL-15, and IL-2 already at 3 h time point, suggesting that they are primary target genes of these cytokines.  相似文献   
84.
Dendritic cells (DCs) respond to microbial infections by undergoing phenotypic maturation and by producing multiple cytokines. In the present study, we analyzed the ability of influenza A and Sendai viruses to induce DC maturation and activate tumor necrosis factor alpha (TNF-alpha), alpha/beta interferon (IFN-alpha/beta), and IFN-like interleukin-28A/B (IFN-lambda2/3) and IL-29 (IFN-lambda1) gene expression in human monocyte-derived myeloid DCs (mDC). The ability of influenza A virus to induce mDC maturation or enhance the expression of TNF-alpha, IFN-alpha/beta, interleukin-28 (IL-28), and IL-29 genes was limited, whereas Sendai virus efficiently induced mDC maturation and enhanced cytokine gene expression. Influenza A virus-induced expression of TNF-alpha, IFN-alpha, IFN-beta, IL-28, and IL-29 genes was, however, dramatically enhanced when cells were pretreated with IFN-alpha. IFN-alpha priming led to increased expression of Toll-like receptor 3 (TLR3), TLR7, TLR8, MyD88, TRIF, and IFN regulatory factor 7 (IRF7) genes and enhanced influenza-induced phosphorylation and DNA binding of IRF3. Influenza A virus also enhanced the binding of NF-kappaB to the respective NF-kappaB elements of the promoters of IFN-beta and IL-29 genes. In mDC IL-29 induced MxA protein expression and possessed antiviral activity against influenza A virus, although this activity was lower than that of IFN-alpha or IFN-beta. Our results show that in human mDCs viruses can readily induce the expression of IL-28 and IL-29 genes whose gene products are likely to contribute to the host antiviral response.  相似文献   
85.
CGH-Plotter: MATLAB toolbox for CGH-data analysis   总被引:1,自引:0,他引:1  
CGH-Plotter is a MATLAB toolbox with a graphical user interface for the analysis of comparative genomic hybridization (CGH) microarray data. CGH-Plotter provides a tool for rapid visualization of CGH-data according to the locations of the genes along the genome. In addition, the CGH-Plotter identifies regions of amplifications and deletions, using k-means clustering and dynamic programming. The application offers a convenient way to analyze CGH-data and can also be applied for the analysis of cDNA microarray expression data. CGH-Plotter toolbox is platform independent and requires MATLAB 6.1 or higher to operate.  相似文献   
86.
87.
Are data from different gene expression microarray platforms comparable?   总被引:8,自引:0,他引:8  
Many commercial and custom-made microarray formats are routinely used for large-scale gene expression surveys. Here, we sought to determine the level of concordance between microarray platforms by analyzing breast cancer cell lines with in situ synthesized oligonucleotide arrays (Affymetrix HG-U95v2), commercial cDNA microarrays (Agilent Human 1 cDNA), and custom-made cDNA microarrays from a sequence-validated 13K cDNA library. Gene expression data from the commercial platforms showed good correlations across the experiments (r = 0.78-0.86), whereas the correlations between the custom-made and either of the two commercial platforms were lower (r = 0.62-0.76). Discrepant findings were due to clone errors on the custom-made microarrays, old annotations, or unknown causes. Even within platform, there can be several ways to analyze data that may influence the correlation between platforms. Our results indicate that combining data from different microarray platforms is not straightforward. Variability of the data represents a challenge for developing future diagnostic applications of microarrays.  相似文献   
88.
Most patients with ovarian cancer (OC) are diagnosed at a late stage when there are very few therapeutic options and a poor prognosis. This is due to the lack of clearly defined underlying mechanisms or an oncogenic addiction that can be targeted pharmacologically, unlike other types of cancer. Here, we identified protein tyrosine kinase 7 (PTK7) as a potential new therapeutic target in OC following a multiomics approach using genetic and pharmacological interventions. We performed proteomics analyses upon PTK7 knockdown in OC cells and identified novel downstream effectors such as synuclein-γ (SNCG), SALL2, and PP1γ, and these findings were corroborated in ex vivo primary samples using PTK7 monoclonal antibody cofetuzumab. Our phosphoproteomics analyses demonstrated that PTK7 modulates cell adhesion and Rho-GTPase signaling to sustain epithelial-mesenchymal transition (EMT) and cell plasticity, which was confirmed by high-content image analysis of 3D models. Furthermore, using high-throughput drug sensitivity testing (525 drugs) we show that targeting PTK7 exhibited synergistic activity with chemotherapeutic agent paclitaxel, CHK1/2 inhibitor prexasertib, and PLK1 inhibitor GSK461364, among others, in OC cells and ex vivo primary samples. Taken together, our study provides unique insight into the function of PTK7, which helps to define its role in mediating aberrant Wnt signaling in ovarian cancer.Subject terms: Cancer, Cell signalling  相似文献   
89.
Monosodium urate (MSU) is an endogenous danger signal that is crystallized from uric acid released from injured cells. MSU is known to activate inflammatory response in macrophages but the molecular mechanisms involved have remained uncharacterized. Activated macrophages start to secrete proteins to activate immune response and to recruit other immune cells to the site of infection and/or tissue damage. Secretome characterization after activation of innate immune system is essential to unravel the details of early phases of defense responses. Here, we have analyzed the secretome of human primary macrophages stimulated with MSU using quantitative two-dimensional gel electrophoresis based proteomics as well as high-throughput qualitative GeLC-MS/MS approach combining protein separation by SDS-PAGE and protein identification by liquid chromatography-MS/MS. Both methods showed that MSU stimulation induced robust protein secretion from lipopolysaccharide-primed human macrophages. Bioinformatic analysis of the secretome data showed that MSU stimulation strongly activates unconventional, vesicle mediated protein secretion. The unconventionally secreted proteins included pro-inflammatory cytokines like IL-1β and IL-18, interferon-induced proteins, and danger signal proteins. Also active forms of lysosomal proteases cathepsins were secreted on MSU stimulation, and cathepsin activity was essential for MSU-induced unconventional protein secretion. Additionally, proteins associated to phosphorylation events including Src family tyrosine kinases were increased in the secretome of MSU-stimulated cells. Our functional studies demonstrated that Src, Pyk2, and PI3 kinases act upstream of cathepsins to activate the overall protein secretion from macrophages. In conclusion, we provide the first comprehensive characterization of protein secretion pathways activated by MSU in human macrophages, and reveal a novel role for cathepsins and Src, Pyk2, PI3 kinases in the activation of unconventional protein secretion.The innate immune system is activated in response to microbial infection and tissue damage. Macrophages are the central players of the innate immunity and detect the presence of pathogen-associated molecular patterns (PAMPs)1 and damage-associated molecular patterns (DAMPs) with their pattern recognition receptors. This recognition results in the activation of antimicrobial defense, inflammatory response, tissue regeneration, and recruitment of other inflammatory cells to the site of infection and/or tissue damage (1). Proper innate immune response is essential for the activation of the adaptive immune system. At present it is thought that the activation of innate immunity is most effective when both signals of microbial origin and damage are perceived at the same time (2, 3).Monosodium urate (MSU) is an endogenous DAMP that is crystallized from uric acid released by injured cells (4). Uric acid is a byproduct of purine degradation, and abnormally high levels of uric acid in serum, or hyperuricemia, is a hallmark of metabolic disorders where balance between intake of purines via food and excretion of uric acid is distorted. A well-known disease associated to hyperuricemia is gouty arthritis, in which deposits of MSU can be found in synovial fluid of peripheral joints, and MSU-induced inflammation is the initial trigger of symptoms (5). Hyperuricemia is also linked to other inflammatory diseases, like metabolic syndrome (6, 7), type 2 diabetes (8), and cardiovascular disease (9). MSU-induced inflammation is driven by the innate immune system. MSU engages antigen-presenting cells, macrophages, and dendritic cells. It is a potent adjuvant, initiating a robust adaptive immune response (4). Recently it has been shown that the adjuvant properties of alum are dependent on release of uric acid in vivo (10).It is unclear how cells detect the presence of MSU. It has been suggested that MSU activates intracellular signaling pathways in dendritic cells by directly engaging cellular membranes, particularly the cholesterol-rich components of the plasma membrane (11). Recently Uratsuji and coworkers showed that MSU activates inflammatory response in keratinocytes and monocytic THP-1 cells through membrane-associated P2Y6 (12). It is also well-documented that MSU activates the NLRP3 inflammasome in macrophages (13). The NLRP3 inflammasome is a multiprotein complex comprising of NACHT, LRR, and PYD domains-containing protein 3 (NLRP3), Apoptosis-associated speck-like protein containing a CARD (ASC) and cysteine protease Caspase-1. Activation of NLRP3 inflammasome results in the autocleavage of Caspase-1. The activated Caspase-1 then in turn cleaves pro-inflammatory cytokines IL-1β and IL-18 into their biologically active forms, which are then readily secreted (1417). However, the signaling pathways that are involved in MSU-induced NLRP3 inflammasome activation have remained only partially characterized.Macrophages respond to activating stimuli by producing inflammatory mediators that are delivered to neighboring cells through multiple protein secretion pathways including both conventional and unconventional protein secretion (18). Conventionally secreted proteins contain an N-terminal signal peptide, which directs their transport to the plasma membrane through the well-characterized endoplasmic reticulum (ER)-Golgi pathway. In contrast, mediators and regulators of unconventional protein secretion pathways are less well understood. At present, different proteomic techniques allow for in-depth analysis of the secretome, the global pattern of secreted proteins. Secretome analysis is important in revealing complex cellular processes that require communication and signaling between the cells, and it has recently been applied to analyze the signaling pathways related to cell differentiation (19, 20), cancer (21, 22), and immune responses (2325). In the present work we have characterized the secretome of human primary macrophages that have been activated simultaneously by microbial signal lipopolysaccharide (LPS) and endogenous danger signal MSU to get a global view of macrophage response to combined PAMP and DAMP stimulation.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号