排序方式: 共有86条查询结果,搜索用时 15 毫秒
21.
Udayanath Aich M. Adam Meledeo Srinivasa-Gopalan Sampathkumar Jie Fu Mark B. Jones Christopher A. Weier Sung Yun Chung Benjamin C. Tang Ming Yang Justin Hanes Kevin J. Yarema 《Glycoconjugate journal》2010,27(4):445-459
Carbohydrates are attractive candidates for drug development because sugars are involved in many, if not most, complex human diseases including cancer, immune dysfunction, congenital disorders, and infectious diseases. Unfortunately, potential therapeutic benefits of sugar-based drugs are offset by poor pharmacologic properties that include rapid serum clearance, poor cellular uptake, and relatively high concentrations required for efficacy. To address these issues, pilot studies are reported here where ‘Bu4ManNAc’, a short chain fatty acid-monosaccharide hybrid molecule with anti-cancer activities, was encapsulated in polyethylene glycol-sebacic acid (PEG-SA) polymers. Sustained release of biologically active compound was achieved for over a week from drug-laden polymer formulated into microparticles thus offering a dramatic improvement over the twice daily administration currently used for in vivo studies. In a second strategy, a tributanoylated ManNAc analog (3,4,6-O-Bu3ManNAc) with anti-cancer activities was covalently linked to PEG-SA and formulated into nanoparticles suitable for drug delivery; once again release of biologically active compound was demonstrated. 相似文献
22.
Parthasarathy Sampathkumar Sinem A. Ozyurt Kevin T. Bain Tarun Gheyi Yingchun Wang John G. Luz Stephen R. Wasserman Eun Chan Park Yishi Jin Richard L. Klemke Stephen K. Burley 《Journal of molecular biology》2010,397(4):883-892
PHR [PAM (protein associated with Myc)-HIW (Highwire)-RPM-1 (regulator of presynaptic morphology 1)] proteins are conserved, large multi-domain E3 ubiquitin ligases with modular architecture. PHR proteins presynaptically control synaptic growth and axon guidance and postsynaptically regulate endocytosis of glutamate receptors. Dysfunction of neuronal ubiquitin-mediated proteasomal degradation is implicated in various neurodegenerative diseases. PHR proteins are characterized by the presence of two PHR domains near the N-terminus, which are essential for proper localization and function. Structures of both the first and second PHR domains of Mus musculus (mouse) Phr1 (MYC binding protein 2, Mycbp2) have been determined, revealing a novel β sandwich fold composed of 11 antiparallel β-strands. Conserved loops decorate the apical side of the first PHR domain (MmPHR1), yielding a distinct conserved surface feature. The surface of the second PHR domain (MmPHR2), in contrast, lacks significant conservation. Importantly, the structure of MmPHR1 provides insights into a loss-of-function mutation, Gly1092 → Glu, observed in the Caenorhabditis elegans ortholog RPM-1. 相似文献
23.
Parthasarathy Sampathkumar Sinem A. Ozyurt Johnny Do Kevin T. Bain Mark Dickey Logan A. Rodgers Tarun Gheyi Andrej Sali Seung Joong Kim Jeremy Phillips Ursula Pieper Javier Fernandez‐Martinez Josef D. Franke Anne Martel Hiro Tsuruta Shane Atwell Devon A. Thompson J. Spencer Emtage Stephen R. Wasserman Michael P. Rout J. Michael Sauder Stephen K. Burley 《Proteins》2010,78(8):1992-1998
24.
Sampathkumar B Khachatourians GG Korber DR 《Applied and environmental microbiology》2004,70(8):4613-4620
The responses of Salmonella enterica serovar Enteritidis to a sublethal dose of trisodium phosphate (TSP) and its equivalent alkaline pH made with NaOH were examined. Pretreatment of S. enterica serovar Enteritidis cells with 1.5% TSP or pH 10.0 solutions resulted in a significant increase in thermotolerance, resistance to 2.5% TSP, resistance to high pH, and sensitivity to acid and H(2)O(2). Protein inhibition studies with chloramphenicol revealed that thermotolerance, unlike resistance to high pH, was dependent on de novo protein synthesis. Two-dimensional polyacrylamide gel electrophoresis (PAGE) of total cellular proteins from untreated control cells resolved as many as 232 proteins, of which 22 and 15% were absent in TSP- or alkaline pH-pretreated cells, respectively. More than 50% of the proteins that were either up- or down-regulated by TSP pretreatment were also up- or down-regulated by alkaline pH pretreatment. Sodium dodecyl sulfate-PAGE analysis of detergent-insoluble outer membrane proteins revealed the up-regulation of at least four proteins. Mass spectrometric analysis showed the up-regulated proteins to include those involved in the transport of small hydrophilic molecules across the cytoplasmic membrane and those that act as chaperones and aid in the export of newly synthesized proteins by keeping them in open conformation. Other up-regulated proteins included common housekeeping proteins like those involved in amino acid biosynthesis, nucleotide metabolism, and aminoacyl-tRNA biosynthesis. In addition to the differential expression of proteins following TSP or alkaline pH treatment, changes in membrane fatty acid composition were also observed. Alkaline pH- or TSP-pretreated cells showed a higher saturated and cyclic to unsaturated fatty acid ratio than did the untreated control cells. These results suggest that the cytoplasmic membrane could play a significant role in the induction of thermotolerance and resistance to other stresses following TSP or alkaline pH treatment. 相似文献
25.
Parthasarathy Sampathkumar Frances Lu Xun Zhao Zhenzhen Li Jeremiah Gilmore Kevin Bain Marc E. Rutter Tarun Gheyi Kenneth D. Schwinn Jeffrey B. Bonanno Ursula Pieper J. Eduardo Fajardo Andras Fiser Steven C. Almo Subramanyam Swaminathan Mark R. Chance David Baker Shane Atwell Devon A. Thompson J. Spencer Emtage Stephen R. Wasserman Andrej Sali J. Michael Sauder Stephen K. Burley 《Proteins》2010,78(14):3056-3062
26.
Parthasarathy S Eaazhisai K Balaram H Balaram P Murthy MR 《The Journal of biological chemistry》2003,278(52):52461-52470
Triose-phosphate isomerase, a key enzyme of the glycolytic pathway, catalyzes the isomerization of dihydroxy acetone phosphate and glyceraldehyde 3-phosphate. In this communication we report the crystal structure of Plasmodium falciparum triose-phosphate isomerase complexed to the inhibitor 2-phosphoglycerate at 1.1-A resolution. The crystallographic asymmetric unit contains a dimeric molecule. The inhibitor bound to one of the subunits in which the flexible catalytic loop 6 is in the open conformation has been cleaved into two fragments presumably due to radiation damage. The cleavage products have been tentatively identified as 2-oxoglycerate and meta-phosphate. The intact 2-phosphoglycerate bound to the active site of the other subunit has been observed in two different orientations. The active site loop in this subunit is in both open and "closed" conformations, although the open form is predominant. Concomitant with the loop closure, Phe-96, Leu-167, and residues 208-211 (YGGS) are also observed in dual conformations in the B-subunit. Detailed comparison of the active-site geometry in the present case to the Saccharomyces cerevisiae triose-phosphate isomerase-dihydroxy acetone phosphate and Leishmania mexicana triose-phosphate isomerase-phosphoglycolate complexes, which have also been determined at atomic resolution, shows that certain interactions are common to the three structures, although 2-phosphoglycerate is neither a substrate nor a transition state analogue. 相似文献
27.
Seung Joong Kim Javier Fernandez-Martinez Parthasarathy Sampathkumar Anne Martel Tsutomu Matsui Hiro Tsuruta Thomas M. Weiss Yi Shi Ane Markina-Inarrairaegui Jeffery B. Bonanno J. Michael Sauder Stephen K. Burley Brian T. Chait Steven C. Almo Michael P. Rout Andrej Sali 《Molecular & cellular proteomics : MCP》2014,13(11):2911-2926
28.
High pH during Trisodium Phosphate Treatment Causes Membrane Damage and Destruction of Salmonella enterica Serovar Enteritidis 总被引:1,自引:0,他引:1 下载免费PDF全文
Balamurugan Sampathkumar George G. Khachatourians Darren R. Korber 《Applied microbiology》2003,69(1):122-129
Trisodium phosphate (TSP) is now widely used during the processing of poultry and red meats, but the mechanism whereby it inactivates gram-negative bacteria such Salmonella spp. remains unclear. Thus, Salmonella enterica serovar Enteritidis (ATCC 4931) cells were treated with different concentrations of TSP (1.5, 2.0, and 2.5% [wt/vol]) and compared with (i) cells treated with the same pH as the TSP treatments (pH 10.0, 10.5, and 11.0, respectively) and (ii) cells treated with different concentrations of TSP (1.5, 2.0, and 2.5% [wt/vol]) adjusted to a pH of 7.0 ± 0.2 (mean ± standard deviation). Cell viability, loss of membrane integrity, cellular leakage, release of lipopolysaccharides, and cell morphology were accordingly examined and quantified under the above treatment conditions. Exposure of serovar Enteritidis cells to TSP or equivalent alkaline pH resulted in the loss of cell viability and membrane integrity in a TSP concentration- or alkaline pH-dependent manner. In contrast, cells treated with different concentrations of TSP whose pH was adjusted to 7.0 did not show any loss of cell viability or membrane integrity. A 30-min pretreatment with 1.0 mM EDTA significantly enhanced the loss of membrane integrity only when followed by TSP or alkaline pH treatments. Measuring the absorbance at 260 nm, agarose gel electrophoresis, Bradford assay, and Tricine-sodium dodecyl sulfate gel electrophoresis of filtrates of treated cell suspensions revealed considerable release of DNA, proteins, and lipopolysaccharides compared to controls and pH 7.0 TSP treatments. Electron microscopic examination of TSP- or alkaline pH-treated cells showed disfigured cell surface topology and wrinkled appearance and showed evidence of a TSP concentration- and pH-dependent disruption of the cytoplasmic and outer membranes. These results demonstrate that TSP treatment permeabilizes and disrupts the cytoplasmic and outer membranes of serovar Enteritidis cells because of the alkaline pH, which in turn leads to release of intracellular contents and eventual cell death. 相似文献
29.
AF Newmaster KJ Berg S Ragupathy M Palanisamy K Sambandan SG Newmaster 《Journal of ethnobiology and ethnomedicine》2011,7(1):1-17
Local knowledge systems are not considered in the conservation of fragile seagrass marine ecosystems. In fact, little is known about the utility of seagrasses in local coastal communities. This is intriguing given that some local communities rely on seagrasses to sustain their livelihoods and have relocated their villages to areas with a rich diversity and abundance of seagrasses. The purpose of this study is to assist in conservation efforts regarding seagrasses through identifying Traditional Ecological Knowledge (TEK) from local knowledge systems of seagrasses from 40 coastal communities along the eastern coast of India. We explore the assemblage of scientific and local traditional knowledge concerning the 1. classification of seagrasses (comparing scientific and traditional classification systems), 2. utility of seagrasses, 3. Traditional Ecological Knowledge (TEK) of seagrasses, and 4. current conservation efforts for seagrass ecosystems. Our results indicate that local knowledge systems consist of a complex classification of seagrass diversity that considers the role of seagrasses in the marine ecosystem. This fine-scaled ethno-classification gives rise to five times the number of taxa (10 species = 50 local ethnotaxa), each with a unique role in the ecosystem and utility within coastal communities, including the use of seagrasses for medicine (e.g., treatment of heart conditions, seasickness, etc.), food (nutritious seeds), fertilizer (nutrient rich biomass) and livestock feed (goats and sheep). Local communities are concerned about the loss of seagrass diversity and have considerable local knowledge that is valuable for conservation and restoration plans. This study serves as a case study example of the depth and breadth of local knowledge systems for a particular ecosystem that is in peril. 相似文献
30.
Sampathkumar A Lindeboom JJ Debolt S Gutierrez R Ehrhardt DW Ketelaar T Persson S 《The Plant cell》2011,23(6):2302-2313
In eukaryotic cells, the actin and microtubule (MT) cytoskeletal networks are dynamic structures that organize intracellular processes and facilitate their rapid reorganization. In plant cells, actin filaments (AFs) and MTs are essential for cell growth and morphogenesis. However, dynamic interactions between these two essential components in live cells have not been explored. Here, we use spinning-disc confocal microscopy to dissect interaction and cooperation between cortical AFs and MTs in Arabidopsis thaliana, utilizing fluorescent reporter constructs for both components. Quantitative analyses revealed altered AF dynamics associated with the positions and orientations of cortical MTs. Reorganization and reassembly of the AF array was dependent on the MTs following drug-induced depolymerization, whereby short AFs initially appeared colocalized with MTs, and displayed motility along MTs. We also observed that light-induced reorganization of MTs occurred in concert with changes in AF behavior. Our results indicate dynamic interaction between the cortical actin and MT cytoskeletons in interphase plant cells. 相似文献