首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199篇
  免费   9篇
  国内免费   7篇
  2022年   6篇
  2021年   7篇
  2020年   3篇
  2019年   4篇
  2018年   6篇
  2017年   2篇
  2016年   9篇
  2015年   14篇
  2014年   11篇
  2013年   21篇
  2012年   17篇
  2011年   22篇
  2010年   14篇
  2009年   2篇
  2008年   9篇
  2007年   7篇
  2006年   13篇
  2005年   4篇
  2004年   12篇
  2003年   13篇
  2002年   4篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1995年   1篇
  1994年   2篇
  1985年   1篇
  1979年   1篇
  1967年   1篇
排序方式: 共有215条查询结果,搜索用时 484 毫秒
21.
22.
Rhomboid peptidases (proteases) play key roles in signaling events at the membrane bilayer. Understanding the regulation of rhomboid function is crucial for insight into its mechanism of action. Here we examine the oligomeric state of three different rhomboid proteases. We subjected Haemophilus influenzae, (hiGlpG), Escherichia coli GlpG (ecGlpG) and Bacillus subtilis (YqgP) to sedimentation equilibrium analysis in detergent-solubilized dodecylmaltoside (DDM) solution. For hiGlpG and ecGlpG, rhomboids consisting of the core 6 transmembrane domains without and with soluble domains respectively, and YqgP, predicted to have 7 transmembrane domains with larger soluble domains at the termini, the predominant species was dimeric with low amounts of monomer and tetramers observed. To examine the effect of the membrane domain alone on oligomeric state of rhomboid, hiGlpG, the simplest form from the rhomboid class of intramembrane proteases representing the canonical rhomboid core of six transmembrane domains, was studied further. Using gel filtration and crosslinking we demonstrate that hiGlpG is dimeric and functional in DDM detergent solution. More importantly co-immunoprecipitation studies demonstrate that the dimer is present in the lipid bilayer suggesting a physiological dimer. Overall these results indicate that rhomboids form oligomers which are facilitated by the membrane domain. For hiGlpG we have shown that these oligomers exist in the lipid bilayer. This is the first detailed oligomeric state characterization of the rhomboid family of peptidases.  相似文献   
23.
Shigella boydii causes bacillary dysentery or shigellosis and generates a significant burden in the developing nations. S. boydii-mediated infection assays were performed at both physiological and molecular levels using Caenorhabditis elegans as a host. Continuous exposure of worms to S. boydii showed a reduced life span indicating the pathogenicity of Shigella. Quantitative Real-Time PCR analysis was performed to analyze the expression and regulation of host specific candidate-antimicrobial genes (clec-60, clec-87, lys-7), which were expressed significantly during early infection, but weakened during the latter hours. Increased mortality of mutant RB1285 by S. boydii and Shigella flexneri indicated the role of lys-7 during Shigella infection. Protein-protein interactions (PPIs) database was used to analyze the interaction of immune proteins in both C. elegans and humans. In addition, the expression and regulation were revealed about immune genes (clec-61, clec-62, clec-63, F54D5.3 and ZK1320.2), which encode several intermediate immune protein partners (CLEC-61, CLEC-62, CLEC-63, F54D5.3, ZK1320.2, W03D2.6 and THN-2) that interact with LYS-7 and CLEC-60 and were found to play a role in C. elegans immune defense against S. boydii infections. Similarly, the immune genes that are specific to the human defense system, which encode IGHV4-39, A2M, LTF, and CD79A, were predicted to be expressed with LYZ and MBL2, thus indicating their regulation during Shigella infections. Our results using the lowest eukaryotic model system and human database indicated that the major players involved in immunity-related processes appear to be common in cases of Shigella sp. mediated immune responses. This article is part of a Special Issue entitled: Computational Methods for Protein Interaction and Structural Prediction.  相似文献   
24.
In the present study, the partial gene sequences of P32 protein, an immunogenic envelope protein of Capripoxviruses (CaPV), were analyzed to assess the genetic relationship among sheeppox and goatpox virus isolates, and restriction enzyme specific PCR-RFLP was developed to differentiate CaPV strains. A total of six goatpox virus (GTPV) and nine sheeppox virus (SPPV) isolates of Indian origin were included in the sequence analysis of the attachment gene. The sequence analysis revealed a high degree of sequence identity among all the Indian SPPV and GTPV isolates at both nucleotide and amino acid levels. Phylogenetic analysis showed three distinct clusters of SPPV, GTPV and Lumpy skin disease virus (LSDV) isolates. Further, multiple sequence alignment revealed a unique change at G120A in all GTPV isolates resulting in the formation of Dra I restriction site in lieu of EcoR I, which is present in SPPV isolates studied. This change was unique and exploited to develop restriction enzyme specific PCR-RFLP for detection and differentiation of SPPV and GTPV strains. The optimized PCR-RFLP was validated using a total of fourteen (n=14) cell culture isolates and twenty two (n=22) known clinical samples of CaPV. The Restriction Enzyme specific PCR-RFLP to differentiate both species will allow a rapid differential diagnosis during CaPV outbreaks particularly in mixed flocks of sheep and goats and could be an adjunct/supportive tool for complete gene or virus genome sequencing methods.  相似文献   
25.
Glycosomes are peroxisome-like organelles essential for trypanosomatid parasites. Glycosome biogenesis is mediated by proteins called “peroxins,” which are considered to be promising drug targets in pathogenic Trypanosomatidae. The first step during protein translocation across the glycosomal membrane of peroxisomal targeting signal 1 (PTS1)-harboring proteins is signal recognition by the cytosolic receptor peroxin 5 (PEX5). The C-terminal PTS1 motifs interact with the PTS1 binding domain (P1BD) of PEX5, which is made up of seven tetratricopeptide repeats. Obtaining diffraction-quality crystals of the P1BD of Trypanosoma brucei PEX5 (TbPEX5) required surface entropy reduction mutagenesis. Each of the seven tetratricopeptide repeats appears to have a residue in the αL conformation in the loop connecting helices A and B. Five crystal structures of the P1BD of TbPEX5 were determined, each in complex with a hepta- or decapeptide corresponding to a natural or nonnatural PTS1 sequence. The PTS1 peptides are bound between the two subdomains of the P1BD. These structures indicate precise recognition of the C-terminal Leu of the PTS1 motif and important interactions between the PTS1 peptide main chain and up to five invariant Asn side chains of PEX5. The TbPEX5 structures reported here reveal a unique hydrophobic pocket in the subdomain interface that might be explored to obtain compounds that prevent relative motions of the subdomains and interfere selectively with PTS1 motif binding or release in trypanosomatids, and would therefore disrupt glycosome biogenesis and prevent parasite growth.  相似文献   
26.
Leukotoxin (Ltx) is a prominent virulence factor produced by Aggregatibacter actinomycetemcomitans, an oral microorganism highly associated with aggressive periodontitis. Ltx compromises host responsiveness by altering the viability of neutrophils, lymphocytes, and macrophages. Previously, we developed a Rhesus (Rh) monkey colonization model designed to determine the effect of virulence gene mutations on colonization of A. actinomycetemcomitans. Unexpectedly, an A. actinomycetemcomitans leukotoxin (ltxA) mutant (RhAa-VS2) failed to colonize in the Rh model. No previous literature suggested that Ltx was associated with A. actinomycetemcomitans binding to tooth surfaces. These results led us to explore the broad effects of the ltxA mutation in vitro. Results indicated that LtxA activity was completely abolished in RhAa-VS2 strain, while complementation significantly (P<0.0001) restored leukotoxicity compared to RhAa-VS2 strain. RT-PCR analysis of ltx gene expression ruled out polar effects. Furthermore, binding of RhAa-VS2 to salivary-coated hydroxyapatite (SHA) was significantly decreased (P<0.0001) compared to wild type RhAa3 strain. Real time RT-PCR analysis of the genes related to SHA binding in RhAa-VS2 showed that genes related to binding were downregulated [rcpA (P = 0.018), rcpB (P = 0.02), tadA (P = 0.002)] as compared to wild type RhAa3. RhAa-VS2 also exhibited decreased biofilm depth (P = 0.008) and exo-polysaccharide production (P<0.0001). Buccal epithelial cell (BEC) binding of RhAa-VS2 was unaffected. Complementation with ltxA restored binding to SHA (P<0.002) but had no effect on biofilm formation when compared to RhAa3. In conclusion, mutation of ltxA diminished hard tissue binding in vitro, which helps explain the previous in vivo failure of a ltxA knockout to colonize the Rh oral cavity. These results suggest that; 1) one specific gene knockout (in this case ltxA) could affect other seemingly unrelated genes (such as rcpA, rcpB tadA etc), and 2) some caution should be used when interpreting the effect attributed to targeted gene mutations when seen in a competitive in vivo environment.  相似文献   
27.
Coccinellids are key predators that are conserved and augmented in agricultural ecosystems, to achieve biological control of pests. Actual quantification of field predation has not been attempted for many of the beneficial coccinellids. Numerous reports show coccinellids as opportunistic, feeding on a variety of food material in addition to their preferred prey. Micraspis discolor is the most abundant species of coccinellid in rice ecosystems and touted as a biocontrol option for brown planthopper (BPH), Nilaparvata lugens (Stal), a key pest of rice. However, it has been reported as both entomophagous and phytophagous. Native polyacrylamide gel electrophoresis (PAGE) was used to separate esterases from whole‐body homogenates of Micraspis and its prey viz., green leafhopper (GLH) Nephotettix virescens (Distant), BPH N. lugens, whitebacked planthopper (WBPH) Sogatella furcifera (Horvath), aphid Rhopalosiphum padi L., thrips, Haplothrips sp., and pollen. Field‐collected beetles showed a range of bands, some corresponding with pollen and GLH, while others were different from prey offered, indicating a wider range of prey spectrum than envisaged. Feeding preference studies confirmed a preference for pollen and GLH in no‐choice (H = 20.724; P = 0.001) and multiple‐choice tests (H = 20.52; P < 0.001) and a significant preference for pollen over all insects offered in the paired‐choice test (t = 5.099; P = 0.007). The abundance of adult M. discolor in rice at flowering phase does not correspond to prey abundance in the field but rather reflects an inclination to pollen feeding more than entomophagy.  相似文献   
28.
A facile two‐step strategy is developed to design the large‐scale synthesis of hierarchical, unique porous architecture of ternary metal hydroxide nanowires grown on porous 3D Ni foam and subsequent effective sulfurization. The hierarchical Zn–Co–S nanowires (NWs) arrays are directly employed as an electrode for supercapacitors application. The as‐synthesized Zn–Co–S NWs deliver an ultrahigh areal capacity of 0.9 mA h cm?2 (specific capacity of 366.7 mA h g?1) at a current density of 3 mA cm?2, with an exceptional rate capability (≈227.6 mA h g?1 at a very high current density of 40 mA cm?2) and outstanding cycling stability (≈93.2% of capacity retention after 10 000 cycles). Most significantly, the assembled Zn–Co–S NWs//Fe2O3@reduced graphene oxide asymmetric supercapacitors with a wide operating potential window of ≈1.6 V yield an ultrahigh volumetric capacity of ≈1.98 mA h cm?3 at a current density of 3 mA cm?2, excellent energy density of ≈81.6 W h kg?1 at a power density of ≈559.2 W kg?1, and exceptional cycling performance (≈92.1% of capacity retention after 10 000 cycles). This general strategy provides an alternative to design the other ternary metal sulfides, making it facile, free‐standing, binder‐free, and cost‐effective ternary metal sulfide‐based electrodes for large‐scale applications in modern electronics.  相似文献   
29.
A number of neurotransmitter systems have been implicated in contributing to the pathology of mood disorders, including those of dopamine (DA), serotonin (5-HT), norepinephrine (NE) and γ-aminobutyric acid (GABA). Rapid eye movement sleep deprivation (REMSD) alters most of the neurotransmitters, which may have adverse behavioural changes and other health consequences like mania and other psychiatric disorders. The exact role of REMSD altered neurotransmitter levels and the manner in which emerging consequences lead to mania-like behaviour is poorly understood. Thus, we sought to verify the levels of neurotransmitter changes after 48, 72 and 96 h of REMSD induced mania-like behaviour in mice. We performed modified multiple platform (MMP) method of depriving the REM sleep and one group maintained as a control. To measure the hyperactivity through locomotion, exploration and behavioural despair, we performed the Open Field Test (OFT) and the Forced Swim Test (FST). Quantitative determinations of DA, 5-HT, NE and GABA concentrations in four distinct brain regions (cerebral cortex, hippocampus, midbrain, and pons) were determined by the spectrofluorimetric method. These experiments showed higher locomotion and increased swimming, struggling/climbing and decreased mobility among REMSD animals as well as disrupted concentrations of the majority of the studied neurotransmitters during REMSD. Our study indicated that REMSD results in mania-like behaviour in mice and associated disruption to neurotransmitter levels, although the exact mechanisms by which these take place remain to be determined.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号