首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   362篇
  免费   27篇
  2023年   3篇
  2022年   2篇
  2021年   10篇
  2020年   1篇
  2019年   2篇
  2018年   7篇
  2017年   4篇
  2016年   10篇
  2015年   12篇
  2014年   14篇
  2013年   32篇
  2012年   34篇
  2011年   23篇
  2010年   17篇
  2009年   20篇
  2008年   25篇
  2007年   21篇
  2006年   11篇
  2005年   21篇
  2004年   10篇
  2003年   22篇
  2002年   18篇
  2001年   8篇
  2000年   5篇
  1999年   6篇
  1998年   4篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   5篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1986年   3篇
  1985年   2篇
  1984年   6篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1976年   3篇
  1975年   1篇
  1974年   1篇
  1969年   1篇
  1949年   1篇
排序方式: 共有389条查询结果,搜索用时 46 毫秒
341.
342.
We describe the isolation of 10 tetranucleotide microsatellite loci from the yellow-streaked greenbul using an enrichment protocol. All loci were highly variable with the number of alleles ranging from 8 to 13, and observed heterozygosity ranging from 0.652 to 0.870. All loci were in Hardy-Weinberg equilibrium; however, loci Pfl12 and Pfl54 showed significant linkage disequilibrium. All 10 loci successfully amplified and were polymorphic in at least one of four related Phyllastrephus species. These loci should prove to be widely applicable to studies of phylogeography, hybridization and paternity in African greenbuls.  相似文献   
343.
344.
Oxidized linoleic acid regulates expression and shedding of syndecan-4   总被引:2,自引:0,他引:2  
Syndecan-4, a heparan sulfate proteoglycan that is widely expressed in the vascular wall and as a cell surface receptor, modulates events relevant to acute tissue repair, including cell migration and proliferation, cell-substrate interactions, and matrix remodeling. While syndecan-4 expression is regulated in response to acute vascular wall injury, its regulation under chronic proatherogenic conditions such as those characterized by prolonged exposure to oxidized lipids has not been defined. In this investigation, arterial smooth muscle cells were treated with 13-hydroperoxy-9,11-octadecadienoic acid (HPODE) and 13-hydroperoxy-10,12-octadecadienoic acid, oxidized products of linoleic acid, which is the major oxidizable fatty acid in LDL. Both oxidized fatty acids induced a dose-dependent, rapid upregulation of syndecan-4 mRNA expression that was not attenuated by cycloheximide. This response was inhibited by pretreatment with N-acetylcysteine, catalase, or MEK1/2 inhibitors, but not by curcumin or lactacystin, known inhibitors of NF-B. These data suggest that oxidized linoleic acid induces syndecan-4 mRNA expression through the initial generation of intracellular hydrogen peroxide with subsequent activation of the extracellular signal-regulated kinase signaling pathway via MEK1/2. Notably, the HPODE-induced enhancement of syndecan-4 mRNA was accompanied by accelerated shedding of syndecan-4. In principle, alterations in both the cell surface expression and shedding of syndecan-4 may augment a variety of proatherogenic events that occur in response to oxidized lipids. heparan sulfate proteoglycan; smooth muscle cell  相似文献   
345.
Present in virtually every species, thioredoxins catalyze disulfide/dithiol exchange with various substrate proteins. While the human genome contains a single thioredoxin gene, plant thioredoxins are a complex protein family. A total of 19 different thioredoxin genes in six subfamilies has emerged from analysis of the Arabidopsis thaliana genome. Some function specifically in mitochondrial and chloroplast redox signaling processes, but target substrates for a group of eight thioredoxin proteins comprising the h subfamily are largely uncharacterized. In the course of a structural genomics effort directed at the recently completed A. thaliana genome, we determined the structure of thioredoxin h1 (At3g51030.1) in the oxidized state. The structure, defined by 1637 NMR-derived distance and torsion angle constraints, displays the conserved thioredoxin fold, consisting of a five-stranded beta-sheet flanked by four helices. Redox-dependent chemical shift perturbations mapped primarily to the conserved WCGPC active-site sequence and other nearby residues, but distant regions of the C-terminal helix were also affected by reduction of the active-site disulfide. Comparisons of the oxidized A. thaliana thioredoxin h1 structure with an h-type thioredoxin from poplar in the reduced state revealed structural differences in the C-terminal helix but no major changes in the active site conformation.  相似文献   
346.
Oxidized low density lipoprotein (OxLDL) has multiple proatherogenic effects, including induction of apoptosis. We have recently shown that OxLDL markedly downregulates insulin-like growth factor-1 receptor (IGF-1R) in human aortic smooth muscle cells, and that IGF-1R overexpression blocks OxLDL-induced apoptosis. We hypothesized that specific OxLDL-triggered signaling events led to IGF-1R downregulation and apoptosis. We examined OxLDL signaling pathways and found that neither IGF-1R downregulation nor the proapoptotic effect was blocked by inhibition of OxLDL-triggered extracellular signal-regulated kinase, p38 mitogen-activated protein kinase (MAPK), or peroxisome proliferator-activated receptor gamma (PPARgamma) signaling pathways, as assessed using specific inhibitors. However, antioxidants, polyethylene glycol catalase, superoxide dismutase, and Trolox completely blocked OxLDL downregulation of IGF-1R and OxLDL-induced apoptosis. Nordihydroguaiaretic acid, AA-861, and baicalein, which are lipoxygenase inhibitors and also have antioxidant activity, blocked IGF-1R downregulation and apoptosis as well as reactive oxygen species (ROS) production. These results suggest that OxLDL enhances ROS production possibly through lipoxygenase activity, leading to IGF-1R downregulation and apoptosis. Furthermore, anti-CD36 scavenger receptor antibody markedly inhibited OxLDL-induced IGF-1R downregulation and apoptosis as well as ROS production. In conclusion, our data demonstrate that OxLDL downregulates IGF-1R via redox-sensitive pathways that are distinct from OxLDL signaling through MAPK- and PPARgamma-involved pathways but may involve a CD36-dependent mechanism.  相似文献   
347.
In the present study, we demonstrate the thermal induced amyloid formation in a beta-barrel protein, such as the acidic fibroblast growth factor from Notopthalmus viridescens (nFGF-1). Fibril formation in nFGF-1 is observed to occur maximally at 65 degrees C. Electron microscope analysis of the thermal induced fibrils of nFGF-1 shows that they are filamentous with an average diameter of about 20 nm. X-ray diffraction analysis reveals that the thermal induced fibrils of nFGF-1 have a typical "cross-beta" structure with the beta-strands perpendicular to the fibril axis. By using a variety of biophysical techniques including multidimensional NMR, we demonstrate that fibril formation involves the formation of a partially structured intermediate(s) in the thermal unfolding pathway of the protein (nFGF-1). Results of the anilino-8-napthalene sulfonate binding experiments indicate that fibril formation occurs due to the coalescence of the protein (in the intermediate state(s)) through the solvent-exposed non-polar surface(s). In this study, we also demonstrate that organic osmolytes, such as proline, can efficiently prevent the thermal induced amyloid formation in nFGF-1. Proline is found to stabilize the native conformation of the protein. The addition, proline is observed to increase the cooperativity of the unfolding (native <--> denatured) reaction and consequently decrease the population of the "sticky" thermal equilibrium intermediate(s) responsible for the fibril formation.  相似文献   
348.
349.
350.
A new isomer of mesquitol (2,3-trans-3',4',7,8-tetrahydroxyflavan-3-ol) was isolated from Dichrostachys cinerea in excellent yields. It has shown free-radical scavenging property and alpha-glucosidase inhibitory activities but, it could not display xanthine oxidase inhibitory property. However, it was observed that acylation of 3-OH group significantly enhanced the alpha-glucosidase inhibition and displayed xanthine oxidase inhibitory potential. The structure activity relationship revealed that the degree of lipophilicity played a major role in improving enzyme inhibitory activities. A positive correlation was observed between enzyme inhibitory potential and acyl chain length (upto C-16) of aliphatic esters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号