首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2136篇
  免费   116篇
  国内免费   1篇
  2023年   9篇
  2022年   20篇
  2021年   43篇
  2020年   18篇
  2019年   42篇
  2018年   52篇
  2017年   27篇
  2016年   53篇
  2015年   69篇
  2014年   102篇
  2013年   123篇
  2012年   166篇
  2011年   140篇
  2010年   94篇
  2009年   80篇
  2008年   136篇
  2007年   112篇
  2006年   85篇
  2005年   108篇
  2004年   88篇
  2003年   90篇
  2002年   60篇
  2001年   29篇
  2000年   26篇
  1999年   18篇
  1998年   11篇
  1997年   10篇
  1996年   14篇
  1995年   17篇
  1994年   10篇
  1993年   18篇
  1992年   19篇
  1991年   20篇
  1990年   21篇
  1989年   25篇
  1988年   18篇
  1987年   28篇
  1986年   28篇
  1985年   20篇
  1984年   12篇
  1982年   12篇
  1981年   12篇
  1980年   9篇
  1979年   14篇
  1978年   18篇
  1977年   14篇
  1976年   11篇
  1974年   11篇
  1973年   14篇
  1972年   7篇
排序方式: 共有2253条查询结果,搜索用时 15 毫秒
81.
Microtubule associated tumor suppressor 1 (MTUS1) has been recognized as a tumor suppressor gene in multiple cancers. However, the molecular mechanisms underlying the regulation of MTUS1 are yet to be investigated. This study aimed to clarify the significance of DNA methylation in silencing MTUS1 expression. We report that MTUS1 acts as tumor suppressor in non-small cell lung carcinoma (NSCLC). Analysis of in silico database and subsequent knockdown of DNMT1 suggested an inverse correlation between DNMT1 and MTUS1 function. Interestingly, increased methylation at MTUS1 promoter is associated with low expression of MTUS1. Treatment with DNA methyltransferases (DNMTs) inhibitor, 5-aza-2′-deoxycytidine (AZA) leads to both reduced promoter methylation accompanied with enrichment of H3K9Ac and enhanced MTUS1 expression. Remarkably, knockdown of MTUS1 showed increased proliferation and migration of NSCLC cells in contrast to diminished proliferation and migration, upon treatment with AZA. We concluded that low expression of MTUS1 correlates to DNA methylation and histone deacetylation in human NSCLC.  相似文献   
82.
Human impacts can affect the soil properties through erosion and leaching, the ecosystem functions and, consequently, the capacity of a forest to regenerate. Here, we determine the effects of forest disturbance and succession on selected soil chemical properties using two different approaches, before‐after‐control‐impact (BACI) and space‐for‐time (SFT) substitution, and the threatened Atlantic Forest biome as model. We assessed with BACI the long‐term (37‐year) effects of clear cutting on soil properties by comparing data from two topsoil surveys (1978–2017) divided into two treatments: a preserved old growth forest (control) and an adjacent forest that was experimentally cleared with full tree removal (clear‐cut). We examined with SFT the relationship between stand age and soil properties using soil data from three old growth and 13 s growth forests ranging from 7 to 33 years. We found no significant differences between treatments for any soil property or significant changes in phosphorus, potassium, and calcium + magnesium over time. In contrast, pH increased and aluminum decreased in both areas. No relation was found between forest age and most of soil properties, with the exception of potassium which returned to old growth forest levels after 20 years of natural succession, and pH. BACI indicated that deforestation of old growth forest caused no significant effects on soil chemical properties after 37 years of regeneration. SFT demonstrated that soil properties did not change significantly during forest regeneration on formerly disturbed lands. Our findings indicate that natural nutrient‐depleted lowland forests were overall resistant to deforestation followed by passive regeneration at landscape scale. Abstract in Portuguese is available with online material.  相似文献   
83.
Biological Trace Element Research - Instrumental neutron activation analysis (INAA) has been used to determine the concentration of some toxic chemical elements in a variety of aromatic plants...  相似文献   
84.
A greenhouse experiment was carried-out to evaluate the effect of three rates of salinity as abiotic stress on okra plants (Abelmoschus esculentus) infected with the root-knot nematode (Meloidogyne incognita) as biotic stress. Plant lengths and weights were significantly (p?≤?0.05) reduced except root weight and there was a positive correlation between increasing the salinity concentration from 0.1 to 0.3% and increasing the rate of reduction in plant criteria. The number of J2 in soil, galls, and eggmasses were decreased linked to increased salinity rate as compared to nematode control treatment. However, peroxidase and catalase activities were significantly reduced linked to increasing the salinity concentration from 0.1 to 0.3%. There was no significant difference between total phenols at all treatments. Meanwhile, there was no significant improvement in N, P, and K contents whereas photosynthetic pigments (a, b) and carotene were significantly (p?≤?0.05) reduced by nematode infection and increasing the salinity rate from 0.1 to 0.3%.  相似文献   
85.
Chiral considerations are found to be very much relevant in various aspects of forensic toxicology and pharmacology. In forensics, it has become increasingly important to identify the chirality of doping agents to avoid legal arguments and challenges to the analytical findings. The scope of this study was to develop an liquid chromatography–mass spectrometry (LCMS) method for the enantiomeric separation of typical illicit drugs such as ephedrines (ie, 1S,2R(+)‐ephedrine and 1R,2S(?)‐ephedrine) and pseudoephedrine (ie, R,R(?)‐pseudoephedrine and S,S(+)‐pseudoephedrine) by using normal phase chiral liquid chromatography–high‐resolution mass spectrometry technique. Results show that the Lux i‐amylose‐1 stationary phase has very broad and balancing‐enantio‐recognition properties towards ephedrine analogues, and this immobilized chiral stationary phase may offer a powerful tool for enantio‐separation of different types of pharmaceuticals in the normal phase mode. The type of mobile phase and organic modifier used appear to have dramatic influences on separation quality. Since the developed method was able to detect and separate the enantiomers at very low levels (in pico grams), this method opens easy access for the unambiguous identification of these illicit drugs and can be used for the routine screening of the biological samples in the antidoping laboratories.  相似文献   
86.
The weighted masses molecular dynamics (WMMD) technique is applied to the protein adenylate kinase. A novel set of restraints has been developed to allow the use of this technique with proteins. The WMMD simulation is successful in predicting the flexibility of the two mobile domains of the protein. The end product of the simulation is similar to the known open and AMP bound forms of the enzyme. The biological relevance of the restraints used and potential methods of improving the technique are discussed. © 1996 Wiley-Liss, Inc.  相似文献   
87.
High-throughput sequencing enables rapid genome sequencing during infectious disease outbreaks and provides an opportunity to quantify the evolutionary dynamics of pathogens in near real-time. One difficulty of undertaking evolutionary analyses over short timescales is the dependency of the inferred evolutionary parameters on the timespan of observation. Crucially, there are an increasing number of molecular clock analyses using external evolutionary rate priors to infer evolutionary parameters. However, it is not clear which rate prior is appropriate for a given time window of observation due to the time-dependent nature of evolutionary rate estimates. Here, we characterize the molecular evolutionary dynamics of SARS-CoV-2 and 2009 pandemic H1N1 (pH1N1) influenza during the first 12 months of their respective pandemics. We use Bayesian phylogenetic methods to estimate the dates of emergence, evolutionary rates, and growth rates of SARS-CoV-2 and pH1N1 over time and investigate how varying sampling window and data set sizes affect the accuracy of parameter estimation. We further use a generalized McDonald–Kreitman test to estimate the number of segregating nonneutral sites over time. We find that the inferred evolutionary parameters for both pandemics are time dependent, and that the inferred rates of SARS-CoV-2 and pH1N1 decline by ∼50% and ∼100%, respectively, over the course of 1 year. After at least 4 months since the start of sequence sampling, inferred growth rates and emergence dates remain relatively stable and can be inferred reliably using a logistic growth coalescent model. We show that the time dependency of the mean substitution rate is due to elevated substitution rates at terminal branches which are 2–4 times higher than those of internal branches for both viruses. The elevated rate at terminal branches is strongly correlated with an increasing number of segregating nonneutral sites, demonstrating the role of purifying selection in generating the time dependency of evolutionary parameters during pandemics.  相似文献   
88.
Toxoplasmosis is caused by Toxoplasma gondii and in immunocompromised patients it may lead to seizures, encephalitis or death. The conserved enzyme prolyl-tRNA synthetase (PRS) is a validated druggable target in Toxoplasma gondii but the traditional ‘single target–single drug’ approach has its caveats. Here, we describe two potent inhibitors namely halofuginone (HFG) and a novel ATP mimetic (L95) that bind to Toxoplasma gondii PRS simultaneously at different neighbouring sites to cover all three of the enzyme substrate subsites. HFG and L95 act as one triple-site inhibitor in tandem and form an unusual ternary complex wherein HFG occupies the 3’-end of tRNA and the L-proline (L-pro) binding sites while L95 occupies the ATP pocket. These inhibitors exhibit nanomolar IC50 and EC50 values independently, and when given together reveal an additive mode of action in parasite inhibition assays. This work validates a novel approach and lays a structural framework for further drug development based on simultaneous targeting of multiple pockets to inhibit druggable proteins.  相似文献   
89.
Koirala S  Ko CP 《Neuron》2004,44(4):578-580
The process by which excess axons are pruned during development has remained unclear. In this issue of Neuron, Bishop et al. use time-lapse imaging and serial electron microscopy of developing neuromuscular junctions to describe a novel cellular mechanism in which retracting axon branches shed fragments rich in normal synaptic organelles. These "axosomes" are engulfed by adjacent Schwann cells and may be assimilated into the glial cytoplasm. Shedding of axosomes and glial engulfment may represent a widespread mechanism of synapse elimination.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号