首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   356篇
  免费   26篇
  2023年   4篇
  2022年   11篇
  2021年   8篇
  2020年   4篇
  2019年   6篇
  2018年   21篇
  2017年   11篇
  2016年   12篇
  2015年   21篇
  2014年   18篇
  2013年   35篇
  2012年   29篇
  2011年   27篇
  2010年   19篇
  2009年   18篇
  2008年   22篇
  2007年   16篇
  2006年   15篇
  2005年   14篇
  2004年   13篇
  2003年   7篇
  2002年   12篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   6篇
  1990年   1篇
  1989年   3篇
  1988年   3篇
  1986年   1篇
  1984年   1篇
  1982年   2篇
  1979年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有382条查询结果,搜索用时 140 毫秒
81.
This experiment assessed the biochemical changes in fenugreek plants exposed to gamma radiation. Two pot experiments were carried out during two growing seasons of 2015 and 2016. Seeds were subjected to five doses of gamma irradiation (25, 50, 100, 200 and 400?Gy) and were immediately planted into soil pots in a greenhouse. The experimental analysis was performed in M1 and M2 generations. Significant differences between irradiated and control plants were detected for most studied characters in M1 and M2 generations. It was demonstrated that low doses of gamma irradiation led to gradually increases in growth, yield characters, leaf soluble protein concomitantly with increases in the contents of phenolic and flavonoids compounds particularly at 100?Gy. These changes were accompanied by a substantial increase in ascorbic acid, α-tocopherol and retinol contents. Proline content was increased under all doses of gamma rays in M1 generation and the highest amount of proline was obtained at 200?Gy with visible decrease in M2 generation under the same dose. Meanwhile, the highest dose of gamma radiation (400?Gy) decreased all the studied parameters in both mutagenic generations as compared with control plants. In addition, gamma irradiation doses induced changes in DNA profile on using five primers and caused the appearance and disappearance of DNA polymorphic bands with variation in their intensity. These findings confirm the effectiveness of relatively low doses of gamma rays on improving the physiological and biochemical criteria of fenugreek plants.  相似文献   
82.
Since their discovery, single‐domain antigen‐binding fragments of camelid‐derived heavy‐chain‐only antibodies, also known as nanobodies (Nbs), have proven to be of outstanding interest as therapeutics against human diseases and pathogens including viruses, but their use against phytopathogens remains limited. Many plant viruses including Grapevine fanleaf virus (GFLV), a nematode‐transmitted icosahedral virus and causal agent of fanleaf degenerative disease, have worldwide distribution and huge burden on crop yields representing billions of US dollars of losses annually, yet solutions to combat these viruses are often limited or inefficient. Here, we identified a Nb specific to GFLV that confers strong resistance to GFLV upon stable expression in the model plant Nicotiana benthamiana and also in grapevine rootstock, the natural host of the virus. We showed that resistance was effective against a broad range of GFLV isolates independently of the inoculation method including upon nematode transmission but not against its close relative, Arabis mosaic virus. We also demonstrated that virus neutralization occurs at an early step of the virus life cycle, prior to cell‐to‐cell movement. Our findings will not only be instrumental to confer resistance to GFLV in grapevine, but more generally they pave the way for the generation of novel antiviral strategies in plants based on Nbs.  相似文献   
83.
An acyltransferase hydroxycinnamoyl-Coenzyme A: -hydroxypalmitic acid O-hydroxycinnamoyltransferase (HHT; EC 2.3.1.-), which transfers hydroxycinnamic acids from hydroxycinnamoyl-CoA thioesters to several hydroxylated fatty acid derivatives, was characterized from tobacco (Nicotiana tabacum L. cv. Xanthi nc) cell-suspension cultures. It exhibited the same properties as the enzyme previously detected in wound-healing potato tuber discs (Lotfy et al., 1994, Phytochemistry 35: 1419–1424), and especially a marked specificity for -hydroxypalmitic acid and feruloyl-CoA. It was purified 300-fold to near homogeneity from late logarithmic-phase cell suspensions. The apparent molecular mass of the native protein was 55 kDa and its isoelectric point, estimated by electrofocusing, was 4.6. The purified enzyme conjugated ferulic acid to -hydroxypalmitic acid and to 1-tetradecanol, its main lipidic substrates, suggesting that the same enzyme probably synthesizes the different esters of 1-alkanols and of -hydroxy fatty acids which are formed in vitro.Abbreviations ABA abscisic acid - IEF isoelectric focusing - HHT hydroxycinnamoyl-Coenzyme A: -hydroxypalmitic acid O-hydroxycinnamoyltransferase - pI isoelectric point  相似文献   
84.
Some properties of an extracellular lipase produced byLactobacillus delbrueckii subsp.bulgaricus were studied. Maximum enzyme activity was found against olive and butter oil as enzyme substrates. Addition of 9% acacia gum, 0.1% Na-deoxycholate and 0.01 M CaCl2 to the enzyme reaction mixture increased-lipase activity from 5.3 to 14.5 (FFA/mg protein/minute) at pH 6.0 and at 40° C. Maximum lipase production was reached in the presence of glucose as a sole source of carbon, wheat bran as nitrogen source, olive oil as a sole lipid source and butyric acid as fatty acid supporting the growth medium. An initial pH value of the culture medium of 6.0 and a temperature of 35° C gave the highest lipolytic activity.  相似文献   
85.
The rapid progress in the development of molecular technology has resulted in the identification of most of the genes of the heme biosynthesis pathway. Important problems in the pathogenesis and treatment of porphyrias now seem likely to be solved by the possibility of creating animal models and by the transfer of normal genes or cDNAs to target cells. Animal models of porphyrias naturally occur for erythropoietic protoporphyria and congenital erythropoietic porphyria, and different murine models have been or are being created for erythropoietic and hepatic porphyrias. The PBGD knock-out mouse will be useful for the understanding of nervous system dysfunction in acute porphyrias. Murine models of erythropoietic porphyrias are being used for bone-marrow transplantation experiments to study the features of erythropoietic and hepatic abnormalities. Gene transfer experiments have been startedin vitro to look at the feasibility of somatic gene therapy in erythropoietic porphyrias. In particular, we have documented sufficient gene transfer rate and metabolic correction in different CEP disease cells to indicate that this porphyria is a good candidate for treatment by gene therapy in hematopoietic stem cells. With the rapid advancement of methods that may allow more precise and/or efficient gene targeting, gene therapy will become a new therapeutic option for porphyrias.  相似文献   
86.
87.
88.
89.
Abstract: Excessive activation of N-methyl-d -aspartate (NMDA) receptor channels (NRs) is a major cause of neuronal death associated with stroke and ischemia. Cerebellar granule neurons in vivo, but not in culture, are relatively resistant to toxicity, possibly owing to protective effects of glia. To evaluate whether NR-mediated signaling is modulated when developing neurons are cocultured with glia, the neurotoxic responses of rat cerebellar granule cells to applied NMDA or glutamate were compared in astrocyte-rich and astrocyte-poor cultures. In astrocyte-poor cultures, significant neurotoxicity was observed in response to NMDA or glutamate and was inhibited by an NR antagonist. Astrocyte-rich neuronal cultures demonstrated three significant differences, compared with astrocyte-poor cultures: (a) Neuronal viability was increased; (b) glutamate-mediated neurotoxicity was decreased, consistent with the presence of a sodium-coupled glutamate transport system in astrocytes; and (c) NMDA- but not kainate-mediated neurotoxicity was decreased, in a manner that depended on the relative abundance of glia in the culture. Because glia do not express NRs or an NMDA transport system, the mechanism of protection is distinct from that observed in response to glutamate. No differences in NR subunit composition (evaluated using RT-PCR assays for NR1 and NR2 subunit mRNAs), NR sensitivity (evaluated by measuring NR-mediated changes in intracellular Ca2+ levels), or glycine availability as a coagonist (evaluated in the presence and absence of exogenous glycine) were observed between astrocyte-rich and astrocyte-poor cultures, suggesting that glia do not directly modulate NR composition or function. Nordihydroguaiaretic acid, a lipoxygenase inhibitor, blocked NMDA-mediated toxicity in astrocyte-poor cultures, raising the possibility that glia effectively reduce the accumulation of highly diffusible and toxic arachidonic acid metabolites in neurons. Alternatively, glia may alter neuronal development/phenotype in a manner that selectively reduces susceptibility to NR-mediated toxicity.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号