首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   305篇
  免费   17篇
  2023年   3篇
  2022年   5篇
  2021年   10篇
  2020年   5篇
  2019年   7篇
  2018年   4篇
  2017年   3篇
  2016年   8篇
  2015年   9篇
  2014年   15篇
  2013年   23篇
  2012年   27篇
  2011年   29篇
  2010年   14篇
  2009年   17篇
  2008年   8篇
  2007年   11篇
  2006年   19篇
  2005年   10篇
  2004年   14篇
  2003年   9篇
  2002年   8篇
  2001年   3篇
  2000年   4篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1992年   2篇
  1991年   2篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   5篇
  1985年   6篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1980年   2篇
  1977年   2篇
  1976年   2篇
  1973年   1篇
  1971年   1篇
  1969年   1篇
  1968年   3篇
  1967年   1篇
排序方式: 共有322条查询结果,搜索用时 31 毫秒
91.
Human islet amyloid polypeptide (hIAPP) is a highly amyloidogenic protein co-secreted with insulin in response to glucose levels. The formation of hIAPP amyloid plaques near islet cells has been linked to the death of insulin-secreting β-cells in humans and the progression of type II diabetes. Since both healthy individuals and those with type II diabetes produce and secrete hIAPP, it is reasonable to look for factors involved in storing hIAPP and preventing amyloidosis. We have previously shown that zinc inhibits the formation of insoluble amyloid plaques of hIAPP; however, there remains significant ambiguity in the underlying mechanisms. In this study, we show that zinc binds unaggregated hIAPP at micromolar concentrations similar to those found in the extracellular environment. By contrast, the fibrillar amyloid form of hIAPP has low affinity for zinc. The binding stoichiometry obtained from isothermal titration calorimetry experiments indicates that zinc favors the formation of hIAPP hexamers. High-resolution NMR structures of hIAPP bound to zinc reveal changes in the electron environment along residues that would be located along one face of the amphipathic hIAPP α-helix proposed as an intermediate for amyloid formation. Results from electrospray ionization mass spectroscopy investigations showed that a single zinc atom is predominantly bound to hIAPP and revealed that zinc inhibits the formation of the dimer. At higher concentrations of zinc, a second zinc atom binds to hIAPP, suggesting the presence of a low-affinity secondary binding site. Combined, these results suggest that zinc promotes the formation of oligomers while creating an energetic barrier for the formation of amyloid fibers.  相似文献   
92.
Human respiratory syncytial virus (RSV), a major cause of severe respiratory diseases, efficiently suppresses cellular innate immunity, represented by type I interferon (IFN), using its two unique nonstructural proteins, NS1 and NS2. In a search for their mechanism, NS1 was previously shown to decrease levels of TRAF3 and IKKε, whereas NS2 interacted with RIG-I and decreased TRAF3 and STAT2. Here, we report on the interaction, cellular localization, and functional domains of these two proteins. We show that recombinant NS1 and NS2, expressed in lung epithelial A549 cells, can form homo- as well as heteromers. Interestingly, when expressed alone, substantial amounts of NS1 and NS2 localized to the nuclei and to the mitochondria, respectively. However, when coexpressed with NS2, as in RSV infection, NS1 could be detected in the mitochondria as well, suggesting that the NS1-NS2 heteromer localizes to the mitochondria. The C-terminal tetrapeptide sequence, DLNP, common to both NS1 and NS2, was required for some functions, but not all, whereas only the NS1 N-terminal region was important for IKKε reduction. Finally, NS1 and NS2 both interacted specifically with host microtubule-associated protein 1B (MAP1B). The contribution of MAP1B in NS1 function was not tested, but in NS2 it was essential for STAT2 destruction, suggesting a role of the novel DLNP motif in protein-protein interaction and IFN suppression.  相似文献   
93.
We are reporting the discovery of small molecule inhibitors for vascular endothelial growth factor receptor type 2 (VEGFR-2) extracellular domain. The VEGFR-2 extracellular domain is responsible for the homo-dimerization process, which has been recently reported as a main step in VEGFR signal transduction cascade. This cascade is essential for the vascularization and survival of most types of cancers. Two main design strategies were used; Molecular docking-based Virtual Screening and Fragment Based Design (FBD). A virtual library of drug like compounds was screened using a cascade of docking techniques in order to discover an inhibitor that binds to this new binding site. Rapid docking methodology was used first to filter the large number of compounds followed by more accurate and slow ones. Fragment based molecular design was adopted afterwards due to unsatisfactory results of screening process. Screening and design process resulted in a group of inhibitors with superior binding energies exceeding that of the natural substrate. Molecular dynamics simulation was used to test the stability of binding of these inhibitors and finally the drug ability of these compounds was assisted using Lipinski rule of five. By this way the designed compounds have shown to possess high pharmacologic potential as novel anticancer agents.  相似文献   
94.
AT/RTs (atypical teratoid/rhabdoid tumours) of the CNS (central nervous system) are childhood malignancies associated with poor survival rates due to resistance to conventional treatments such as chemotherapy. We characterized a panel of human AT/RT and MRT (malignant rhabdoid tumour) cell lines for expression of RTKs (receptor tyrosine kinases) and their involvement in tumour growth and survival. When compared with normal brain tissue, AT/RT cell lines overexpressed the IR (insulin receptor) and the IGFIR (insulin-like growth factor-I receptor). Moreover, insulin was secreted by AT/RT cells grown in serum-free medium. Insulin potently activated Akt (also called protein kinase B) in AT/RT cells, as compared with other growth factors, such as epidermal growth factor. Pharmacological inhibitors, neutralizing antibodies, or RNAi (RNA interference) targeting the IR impaired the growth of AT/RT cell lines and induced apoptosis. Inhibitors of the PI3K (phosphoinositide 3-kinase)/Akt pathway also impaired basal and insulin-stimulated AT/RT cell proliferation. Experiments using RNAi and isoform-specific pharmacological inhibitors established a key role for the class I(A) PI3K p110alpha isoform in AT/RT cell growth and insulin signalling. Taken together, our results reveal a novel role for autocrine signalling by insulin and the IR in growth and survival of malignant human CNS tumour cells via the PI3K/Akt pathway.  相似文献   
95.
In mammals, nonvisual responses to light have been shown to involve intrinsically photosensitive retinal ganglion cells (ipRGC) that express melanopsin and that are modulated by input from both rods and cones. Recent in vitro evidence suggests that melanopsin possesses dual photosensory and photoisomerase functions, previously thought to be a unique feature of invertebrate rhabdomeric photopigments. In cultured cells that normally do not respond to light, heterologous expression of mammalian melanopsin confers light sensitivity that can be restored by prior stimulation with appropriate wavelengths. Using three different physiological and behavioral assays, we show that this in vitro property translates to in vivo, melanopsin-dependent nonvisual responses. We find that prestimulation with long-wavelength light not only restores but enhances single-unit responses of SCN neurons to 480-nm light, whereas the long-wavelength stimulus alone fails to elicit any response. Recordings in Opn4-/- mice confirm that melanopsin provides the main photosensory input to the SCN, and furthermore, demonstrate that melanopsin is required for response enhancement, because this capacity is abolished in the knockout mouse. The efficiency of the light-enhancement effect depends on wavelength, irradiance, and duration. Prior long-wavelength light exposure also enhances short-wavelength-induced phase shifts of locomotor activity and pupillary constriction, consistent with the expression of a photoisomerase-like function in nonvisual responses to light.  相似文献   
96.
The aim of this study was to develop optimal conditions for selective adhesion and isolation of mesenchymal progenitor cells (MPCs) from cord blood and to determine their potential for osteogenic differentiation. Mononuclear cells (MNCs) were isolated by Ficoll-Paque gradient and plated onto 48-well culture plates precoated with: human or bovine collagen type I, human collagen type IV, fibronectin or matrigel. Cultures were incubated in αMEM containing fetal calf serum. Viability of the adherent cells was determined by alamarBlue® assay after 2, 3, and 4 weeks. After 4 weeks in culture, cells were typsinized and replated. Primary cultures were analyzed by histochemistry and third passage cells by FACS. Isolated fibroblast-like cells were cultured in the presence of osteogenic factors and differentiation determined by Alizarin Red S staining, RT-PCR and electron dispersive spectroscopy (EDS). MNCs adhered to all types of matrices with the greatest adhesion rates on fibronectin. These cells were CD45+, CD105+, CD14+, CD49a+, CD49f+, CD44+ and CD34. The highest incidence of progenitor cells (PC) was observed on fibronectin and polystyrene. Passages were CD45, CD14, CD34 and weakly CD105+. Primary cultures expressed endothelial/macrophage RNA markers whether cultured on fibronectin or polystyrene and these markers decreased upon passage. The best osteogenic differentiation was observed in MPCs cultured in osteogenic medium containing vitamin D3 and FGF9. These cells expressed the bone-related mRNA, collagen type I, core binding factor I (Cbfa I), osteocalcin and osteopontin. EDS of deposits produced by these cells demonstrated a calcium/phosphate ratio parallel to hydroxyapatite. It was concluded that fibronectin increased adhesion rates and isolation potential of cord blood mesenchymal progenitor cells.  相似文献   
97.
Molecular Biology Reports - Recurrent genetic abnormalities confer distinct morphologic features and play a role in determining the clinical behavior, prognosis and adequate treatment of acute...  相似文献   
98.

Objective

To determine whether IL-4, IL-4Rα and STAT6 polymorphisms are associated with susceptibility to dermatitis in Egyptian children.

Methods

We genotyped three groups of children, consisting of 106 atopic dermatitis (AD) children, 95 non-AD children, and 100 of healthy controls, for IL-4 (− 590 C/T), (− 33 C/T), IL-4Rα (I50V), (Q576R) and STAT6 (2964 G/A), (2892 C/T) gene polymorphisms using PCR-RFLP assay. Total serum IgE and serum IL-4 levels were detected by ELISA.

Results

There was a non-significant association of IL-4 − 590 C/T, − 33 C/T polymorphisms in the children with non-AD or those with AD when compared with the controls. We identified a significant association between IL-4Rα I50V, Q576R polymorphisms and dermatitis susceptibility in AD (p = 0.002, < 0.001 respectively), whereas no such association was observed in non-AD group (p = 0.52, 0.99 respectively). A significant association between STAT6 polymorphisms and both types of dermatitis was found. Patients who were carriers of IL4 − 590C, IL-4Rα I50V G, STAT6 2964 A and STAT6 2892 T had an increased risk of AD [OR and 95% CI: 3.2 (2.5–4.2), p = 0.005]. Furthermore, there was no relation between each polymorphism and serum IL-4 level (p > 0.05 for each) while homozygosity for the risk alleles of IL-4, IL-4Rα and STAT6 SNPs were significantly associated with increased total IgE levels in all subjects.

Conclusion

In Egyptian children, the IL-4Rα and the STAT6 polymorphism may play a role in susceptibility to AD. In addition, gene–gene interaction between the IL-4, the IL-4Rα and the STAT6 significantly increases an individual's susceptibility to AD.  相似文献   
99.
Balanced chromosomal rearrangements represent one of the most common forms of genetic abnormality affecting approximately 1 in every 500 (0.2%) individuals. Difficulties processing the abnormal chromosomes during meiosis lead to an elevated risk of chromosomally abnormal gametes, resulting in high rates of miscarriage and/or children with congenital abnormalities. It has also been suggested that the presence of chromosome rearrangements may also cause an increase in aneuploidy affecting structurally normal chromosomes, due to disruption of chromosome alignment on the spindle or disturbance of other factors related to meiotic chromosome segregation. The existence of such a phenomenon (an inter-chromosomal effect—ICE) remains controversial, with different studies presenting contradictory data. The current investigation aimed to demonstrate conclusively whether an ICE truly exists. For this purpose a comprehensive chromosome screening technique, optimized for analysis of minute amounts of tissue, was applied to a unique collection of samples consisting of 283 oocytes and early embryos derived from 44 patients carrying chromosome rearrangements. A further 5,078 oocytes and embryos, derived from chromosomally normal individuals of identical age, provided a robust control group for comparative analysis. A highly significant (P = 0.0002) increase in the rate of malsegregation affecting structurally normal chromosomes was observed in association with Robertsonian translocations. Surprisingly, the ICE was clearly detected in early embryos from female carriers, but not in oocytes, indicating the possibility of mitotic rather than the previously suggested meiotic origin. These findings have implications for our understanding of genetic stability during preimplantation development and are of clinical relevance for patients carrying a Robertsonian translocation. The results are also pertinent to other situations when cellular mechanisms for maintaining genetic fidelity are relaxed and chromosome rearrangements are present (e.g. in tumors displaying chromosomal instability).  相似文献   
100.
We used a combined approach of homozygosity mapping and whole exome sequencing (WES) to search for the genetic cause of autosomal recessive retinitis pigmentosa (arRP) in families of Yemenite Jewish origin. Homozygosity mapping of two arRP Yemenite Jewish families revealed a few homozygous regions. A subsequent WES analysis of the two index cases revealed a shared homozygous novel nucleotide deletion (c.1220delG) leading to a frameshift (p.Gly407Glufs*56) in an alternative exon (#15) of USH1C. Screening of additional Yemenite Jewish patients revealed a total of 16 homozygous RP patients (with a carrier frequency of 0.008 in controls). Funduscopic and electroretinography findings were within the spectrum of typical RP. While other USH1C mutations usually cause Usher type I (including RP, vestibular dysfunction and congenital deafness), audiometric screening of 10 patients who are homozygous for c.1220delG revealed that patients under 40 years of age had normal hearing while older patients showed mild to severe high tone sensorineural hearing loss. This is the first report of a mutation in a known USH1 gene that causes late onset rather than congenital sensorineural hearing loss. The c.1220delG mutation of USH1C accounts for 23% of RP among Yemenite Jewish patients in our cohort.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号