首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   205篇
  免费   9篇
  2023年   1篇
  2022年   6篇
  2021年   4篇
  2020年   3篇
  2019年   6篇
  2017年   1篇
  2016年   8篇
  2015年   8篇
  2014年   14篇
  2013年   16篇
  2012年   20篇
  2011年   22篇
  2010年   12篇
  2009年   15篇
  2008年   6篇
  2007年   9篇
  2006年   18篇
  2005年   10篇
  2004年   14篇
  2003年   9篇
  2002年   7篇
  1998年   1篇
  1995年   1篇
  1992年   1篇
  1976年   2篇
排序方式: 共有214条查询结果,搜索用时 15 毫秒
81.
We have shown previously that tyrosine phosphorylation of Wiskott-Aldrich syndrome protein (WASP) is important for diverse macrophage functions including phagocytosis, chemotaxis, podosome dynamics, and matrix degradation. However, the specific tyrosine kinase mediating WASP phosphorylation is still unclear. Here, we provide evidence that Hck, which is predominantly expressed in leukocytes, can tyrosine phosphorylate WASP and regulates WASP-mediated macrophage functions. We demonstrate that tyrosine phosphorylation of WASP in response to stimulation with CX3CL1 or via Fcγ receptor ligation were severely reduced in Hck−/− bone marrow-derived macrophages (BMMs) or in RAW/LR5 macrophages in which Hck expression was silenced using RNA-mediated interference (Hck shRNA). Consistent with reduced WASP tyrosine phosphorylation, phagocytosis, chemotaxis, and matrix degradation are reduced in Hck−/− BMMs or Hck shRNA cells. In particular, WASP phosphorylation was primarily mediated by the p61 isoform of Hck. Our studies also show that Hck and WASP are required for passage through a dense three-dimensional matrix and transendothelial migration, suggesting that tyrosine phosphorylation of WASP by Hck may play a role in tissue infiltration of macrophages. Consistent with a role for this pathway in invasion, WASP−/− BMMs do not invade into tumor spheroids with the same efficiency as WT BMMs and cells expressing phospho-deficient WASP have reduced ability to promote carcinoma cell invasion. Altogether, our results indicate that tyrosine phosphorylation of WASP by Hck is required for proper macrophage functions.  相似文献   
82.
83.
Objective: The ?174 interleukin (IL)‐6 gene polymorphism has been proposed as a risk factor for type 2 diabetes, but data are conflicting. Because white fat is a major source of IL‐6 in resting individuals, we tested the hypothesis that BMI modifies the association among the IL‐6 genotype, insulin resistance (IR) (measured using the homeostasis model), and risk of diabetes. Research Methods and Procedures: Outcomes were assessed in a community‐based cohort study of 1525 adults (mean age, 55.6 years; 753 men), who participated in the Framingham Offspring Study during the 1991 to 1995 examinations. Results: We found a significant interaction between IL‐6 genotype and BMI on levels of IR in men (p < 0.0001), with obese homozygotes for the minor C allele being most resistant. The IL‐6‐BMI interaction was not significant (p = 0.46) in women. Among men with the CC genotype, increasing BMI was associated with increased prevalence of diabetes [odds ratio (OR) per unit increase in BMI, 1.30; 95% confidence interval (CI), 1.11 to 1.50] but not among those with the GG (OR, 1.10; 95% CI, 0.98 to 1.22) or GC genotype (OR, 1.05; 95% CI, 0.97 to 1.14). Discussion: The ?174 IL‐6 promoter polymorphism modifies the association of obesity with IR and diabetes risk in men. Weight loss regimens targeted at reducing the risk of diabetes may be of particular benefit for men with a ?174 IL‐6 CC genotype.  相似文献   
84.
In family studies, phenotypic similarities between relatives yield information on the overall contribution of genes to trait variation. Large samples are important for these family studies, especially when comparing heritability between subgroups such as young and old, or males and females. We recruited a cohort of 6,148 participants, aged 14–102 y, from four clustered towns in Sardinia. The cohort includes 34,469 relative pairs. To extract genetic information, we implemented software for variance components heritability analysis, designed to handle large pedigrees, analyze multiple traits simultaneously, and model heterogeneity. Here, we report heritability analyses for 98 quantitative traits, focusing on facets of personality and cardiovascular function. We also summarize results of bivariate analyses for all pairs of traits and of heterogeneity analyses for each trait. We found a significant genetic component for every trait. On average, genetic effects explained 40% of the variance for 38 blood tests, 51% for five anthropometric measures, 25% for 20 measures of cardiovascular function, and 19% for 35 personality traits. Four traits showed significant evidence for an X-linked component. Bivariate analyses suggested overlapping genetic determinants for many traits, including multiple personality facets and several traits related to the metabolic syndrome; but we found no evidence for shared genetic determinants that might underlie the reported association of some personality traits and cardiovascular risk factors. Models allowing for heterogeneity suggested that, in this cohort, the genetic variance was typically larger in females and in younger individuals, but interesting exceptions were observed. For example, narrow heritability of blood pressure was approximately 26% in individuals more than 42 y old, but only approximately 8% in younger individuals. Despite the heterogeneity in effect sizes, the same loci appear to contribute to variance in young and old, and in males and females. In summary, we find significant evidence for heritability of many medically important traits, including cardiovascular function and personality. Evidence for heterogeneity by age and sex suggests that models allowing for these differences will be important in mapping quantitative traits.  相似文献   
85.
The discovery of melanopsin-dependent inner retinal photoreceptors in mammals has precipitated a fundamental reassessment of such non-image forming (NIF) light responses as circadian photoentrainment and the pupil light reflex. By contrast, it remains unclear whether these new photoreceptors also play a role in classical image-forming vision. The retinal ganglion cells that subserve inner retinal photoreception (ipRGCs) project overwhelmingly to brain areas involved in NIF responses, indicating that, in terms of central signaling, their predominant function is non-image forming. However, ipRGCs also exhibit intraretinal communication via gap junction coupling, which could allow them to modulate classical visual pathways within this tissue. Here, we explore this second possibility by using melanopsin knockout (Opn4-/-) mice to examine the role of inner retinal photoreceptors in diurnal regulation of retinal function. By using electroretinography in wild-type mice, we describe diurnal rhythms in both the amplitude and speed of the retinal cone pathway that are a function of both prior light exposure and circadian phase. Unexpectedly, loss of the melanopsin gene abolishes circadian control of these parameters, causing significant attenuation of the diurnal variation in cone vision. Our results demonstrate for the first time a melanopsin-dependent regulation of visual processing within the retina, revealing an important function for inner retinal photoreceptors in optimizing classical visual pathways according to time of day.  相似文献   
86.
CCL21, a lymphatic endothelial cell (LEC)-derived chemokine, and its receptor CCR7 regulate dendritic cell (DC) trafficking to lymph nodes (LN), but it is unclear how CCL21 expression is regulated. Oncostatin M (OSM) is an IL-6-like cytokine synthesized by activated DC and other leukocytes. In vitro, OSM (but not TNF-alpha) stimulated CCL21 mRNA and protein expression by human dermal microvascular EC (DMEC) in an ERK1/2-dependent fashion. Conditioned medium from OSM-treated DMEC stimulated CCL21-dependent chemotaxis of mouse bone marrow-derived DC (BMDC). Cultured BMDC expressed OSM, which was increased with the addition of LPS. Topical application of the contact-sensitizing hapten, trinitrochlorobenzene, resulted in enhanced OSM expression in the skin, whereas cutaneous injection of TNF-alpha did not. Injection of OSM into the footpad increased CCL21 mRNA expression in the draining LN by approximately 10-fold and in mouse skin by approximately 4-fold without increasing CCR7 mRNA. In vitro, OSM increased the permeability of DMEC and lung microvascular EC monolayers to FITC-dextran beads, and, in vivo, it enhanced accumulation of Evans blue dye in draining LN by approximately 3-fold (p = 0.0291). Of note, OSM increased trafficking of BMDC injected in footpads to draining LN by 2-fold (p = 0.016). In summary, OSM up-regulates CCL21 expression in skin and draining regional LN. We propose that OSM is a regulator of CCL21 expression and endothelial permeability in skin, contributing to efficient migration of DC to regional LN.  相似文献   
87.
Mechanisms that function to regulate the rate of de novo phosphatidylinositol (PtdIns) synthesis in mammalian cells have not been elucidated. In this study, we characterize the effect of phorbol ester treatment on de novo PtdIns synthesis in C3A human hepatoma cells. Incubation of cells with 12-O-tetradecanoyl phorbol 13-acetate (TPA) initially (1-6 h) results in a decrease in precursor incorporation into PtdIns; however, at later times (18-24 h), a marked increase is observed. TPA-induced glucose uptake from the medium is not required for observation of the stimulation of PtdIns synthesis, because the effect is apparent in glucose-free medium. Inhibition of the activation of arachidonic acid substantially blocks the synthesis of PtdIns but has no effect on the synthesis of phosphatidylcholine (PtdCho). Increasing the concentration of cellular phosphatidic acid by blocking its conversion to diacylglycerol, on the other hand, enhances the synthesis of PtdIns and inhibits the synthesis of PtdCho. The TPA-induced stimulation of PtdIns synthesis is not the result of the concomitant TPA-induced G1 arrest, because G1 arrest induced by mevastatin has no effect on PtdIns synthesis. Inhibition of protein kinase C activity blocks the stimulatory action of TPA on de novo synthesis of PtdIns but has no effect on TPA-induced inhibition. Potential sites of enzymatic regulation are discussed.  相似文献   
88.

Background

The growth of stem cells in in vitro conditions requires optimal balance between signals mediating cell survival, proliferation, and self-renewal. For clinical application of stem cells, the use of completely defined conditions and elimination of all animal-derived materials from the establishment, culture, and differentiation processes is desirable.

Methodology/Principal Findings

Here, we report the development of a fully defined xeno-free medium (RegES), capable of supporting the expansion of human embryonic stem cells (hESC), induced pluripotent stem cells (iPSC) and adipose stem cells (ASC). We describe the use of the xeno-free medium in the derivation and long-term (>80 passages) culture of three pluripotent karyotypically normal hESC lines: Regea 06/015, Regea 07/046, and Regea 08/013. Cardiomyocytes and neural cells differentiated from these cells exhibit features characteristic to these cell types. The same formulation of the xeno-free medium is capable of supporting the undifferentiated growth of iPSCs on human feeder cells. The characteristics of the pluripotent hESC and iPSC lines are comparable to lines derived and cultured in standard undefined culture conditions. In the culture of ASCs, the xeno-free medium provided significantly higher proliferation rates than ASCs cultured in medium containing allogeneic human serum (HS), while maintaining the differentiation potential and characteristic surface marker expression profile of ASCs, although significant differences in the surface marker expression of ASCs cultured in HS and RegES media were revealed.

Conclusion/Significance

Our results demonstrate that human ESCs, iPSCs and ASCs can be maintained in the same defined xeno-free medium formulation for a prolonged period of time while maintaining their characteristics, demonstrating the applicability of the simplified xeno-free medium formulation for the production of clinical-grade stem cells. The basic xeno-free formulation described herein has the potential to be further optimized for specific applications relating to establishment, expansion and differentiation of various stem cell types.  相似文献   
89.
Molecular markers including inter simple sequence repeats (ISSR) and 18S rDNA gene sequence markers were combined with a detailed morphological analysis to seek characters that discriminate four taxa of Portulaca oleracea s.l. These taxa were identified as the microspecies Portulaca nitida, Portulaca oleracea, Portulaca rausii and Portulaca granulatostellulata. Morphological characters did not provide a clear distinction among the four taxa of P. oleracea s.l. It was found that mixed populations of the taxa occur in several locations and morphological similarities between the microspecies were detected. ISSR analysis indicates that gene flow among populations of different taxa was high and most of the genetic variation (61.9%) occurs within population. These results are inconsistent with the general characteristics of P. oleracea as a self- or 5% cross-pollinated species. A close relationship between P. oleracea, P. rausii and P. granulatostellulata was supported by ISSR and 18S rDNA gene sequence. The ISSR and 18s data support the specific status of P. nitida as a recently evolved taxon. We conclude that P. oleracea exists as a polymorphic species and is not divisible into microspecies based on seed surface as the primary morphological trait, and inter simple sequence repeats (ISSR) and 18S rDNA gene sequence markers. We suggest that the taxa do not merit specific rank as morphological characters and absence of a breeding barrier fail to separate the different populations when they become sympatric.  相似文献   
90.
The biomechanics of the patellofemoral (PF) joint is complex in nature, and the aetiology of such manifestations of PF instability as patellofemoral pain syndrome (PFPS) is still unclear. At this point, the particular factors affecting PFPS have not yet been determined. This study has two objectives: (1) The first is to develop an alternative geometric method using a three-dimensional (3D) registration technique and linear mapping to investigate the PF joint contact stress using an indirect measure: the depth of virtual penetration (PD) of the patellar cartilage surface into the femoral cartilage surface. (2) The second is to develop 3D PF joint models using the finite element analysis (FEA) to quantify in vivo cartilage contact stress and to compare the peak contact stress location obtained from the FE models with the location of the maximum PD. Magnetic resonance images of healthy and PFPS subjects at knee flexion angles of 15°, 30° and 45° during isometric loading have been used to develop the geometric models. The results obtained from both approaches demonstrated that the subjects with PFPS show higher PD and contact stresses than the normal subjects. Maximum stress and PD increase with flexion angle, and occur on the lateral side in healthy and on the medial side in PFPS subjects. It has been concluded that the alternative geometric method is reliable in addition to being computationally efficient compared with FEA, and has the potential to assess the mechanics of PFPS with an accuracy similar to the FEA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号