首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1423篇
  免费   114篇
  国内免费   2篇
  1539篇
  2023年   15篇
  2022年   26篇
  2021年   64篇
  2020年   31篇
  2019年   32篇
  2018年   47篇
  2017年   51篇
  2016年   63篇
  2015年   67篇
  2014年   74篇
  2013年   125篇
  2012年   128篇
  2011年   120篇
  2010年   65篇
  2009年   50篇
  2008年   73篇
  2007年   57篇
  2006年   63篇
  2005年   61篇
  2004年   45篇
  2003年   32篇
  2002年   29篇
  2001年   19篇
  2000年   11篇
  1999年   17篇
  1998年   9篇
  1997年   4篇
  1995年   5篇
  1994年   4篇
  1992年   7篇
  1991年   4篇
  1990年   7篇
  1989年   8篇
  1988年   8篇
  1987年   5篇
  1986年   8篇
  1985年   8篇
  1984年   4篇
  1983年   8篇
  1982年   5篇
  1981年   6篇
  1980年   11篇
  1979年   10篇
  1977年   4篇
  1974年   4篇
  1973年   5篇
  1971年   5篇
  1970年   3篇
  1969年   6篇
  1966年   4篇
排序方式: 共有1539条查询结果,搜索用时 15 毫秒
101.
The effect of elevated carbon dioxide (600±50 cm3 m−3; C600) on growth performance, biomass production, and photosynthesis of Cenchrus ciliaris L. cv. 3108 was studied. This crop responded significantly by plant height, leaf length and width, and biomass production under C600. Leaf area index increased triple fold in the crops grown in the open top chamber with C600. The biomass production in term of fresh and dry biomass accumulation increased by 134.35 (fresh) and 193.34 (dry) % over the control (C360) condition where the crops were grown for 20 d. The rate of photosynthesis and stomatal conductance increased by 24.51 and 46.33 %, respectively, in C600 over C360 plants. In comparison with C360, the rate of transpiration decreased by 6.8 % under C600. Long-term exposure (120 d) to C600 enhanced photosynthetic water use efficiency by 34 %. Also the contents of chlorophylls a and b significantly increased in C600. Thus C. ciliaris grown in C600 throughout the crop season may produce more fodder in terms of green biomass.  相似文献   
102.
103.
Moraxella catarrhalis is an important pathogen in patients with chronic obstructive lung disease (COPD). While M. catarrhalis has been categorized as an extracellular bacterium so far, the potential to invade human respiratory epithelium has not yet been explored. Our results obtained by electron and confocal microscopy demonstrated a considerable potential of M. catarrhalis to invade bronchial epithelial (BEAS-2B) cells, type II pneumocytes (A549) and primary small airway epithelial cells (SAEC). Moraxella invasion was dependent on cellular microfilament as well as on bacterial viability, and characterized by macropinocytosis leading to the formation of lamellipodia and engulfment of the invading organism into macropinosomes, thus indicating a trigger-like uptake mechanism. In addition, the cells examined expressed TLR2 as well as NOD1, a recently found cytosolic protein implicated in the intracellular recognition of bacterial cell wall components. Importantly, inhibition of TLR2 or NOD1 expression by RNAi significantly reduced the M. catarrhalis-induced IL-8 secretion. The role of TLR2 and NOD1 was further confirmed by overexpression assays in HEK293 cells. Overall, M. catarrhalis may employ lung epithelial cell invasion to colonize and to infect the respiratory tract, nonetheless, the bacteria are recognized by cell surface TLR2 and the intracellular surveillance molecule NOD1.  相似文献   
104.
Neurochemical Research - Human/animal brain is a unique organ with substantially high metabolism but it contains no energy reserve that is the reason it requires continuous supply of O2 and energy...  相似文献   
105.
106.
107.
The human health hazards related to persisting use of bisphenol-A (BPA) are well documented. BPA-induced neurotoxicity occurs with the generation of oxidative stress, neurodegeneration, and cognitive dysfunctions. However, the cellular and molecular mechanism(s) of the effects of BPA on autophagy and association with oxidative stress and apoptosis are still elusive. We observed that BPA exposure during the early postnatal period enhanced the expression and the levels of autophagy genes/proteins. BPA treatment in the presence of bafilomycin A1 increased the levels of LC3-II and SQSTM1 and also potentiated GFP-LC3 puncta index in GFP-LC3-transfected hippocampal neural stem cell-derived neurons. BPA-induced generation of reactive oxygen species and apoptosis were mitigated by a pharmacological activator of autophagy (rapamycin). Pharmacological (wortmannin and bafilomycin A1) and genetic (beclin siRNA) inhibition of autophagy aggravated BPA neurotoxicity. Activation of autophagy against BPA resulted in intracellular energy sensor AMP kinase (AMPK) activation, increased phosphorylation of raptor and acetyl-CoA carboxylase, and decreased phosphorylation of ULK1 (Ser-757), and silencing of AMPK exacerbated BPA neurotoxicity. Conversely, BPA exposure down-regulated the mammalian target of rapamycin (mTOR) pathway by phosphorylation of raptor as a transient cell''s compensatory mechanism to preserve cellular energy pool. Moreover, silencing of mTOR enhanced autophagy, which further alleviated BPA-induced reactive oxygen species generation and apoptosis. BPA-mediated neurotoxicity also resulted in mitochondrial loss, bioenergetic deficits, and increased PARKIN mitochondrial translocation, suggesting enhanced mitophagy. These results suggest implication of autophagy against BPA-mediated neurodegeneration through involvement of AMPK and mTOR pathways. Hence, autophagy, which arbitrates cell survival and demise during stress conditions, requires further assessment to be established as a biomarker of xenoestrogen exposure.  相似文献   
108.
109.
Enantioselective trace level sensing of l-histidine (limit of detection, 1.980 ngm L(-1), S/N=3) was feasible with the use of a typical, reproducible, and rugged complex imprinted polymer-based pencil graphite electrode, in aqueous samples. In the present instance, the Cu(2+) ion-mediated imprinting of l-histidine in an molecularly imprinted polymer motif actually helped upbringing electrocatalytic activity to respond an enhanced differential pulse anodic stripping voltammetric oxidation peak of l-histidine, without any cross-reactivity and false-positive, in real samples. The proposed sensor could be considered suitable for the practical applications in biomarking histedinemia, a disease associated with L-histidine metabolic disorders, in clinical settings.  相似文献   
110.
Chandra A  Tiwari KK  Nagaich D  Dubey N  Kumar S  Roy AK 《Génome》2011,54(12):1016-1028
A limited number of functional molecular markers has slowed the desired genetic improvement of Stylosanthes species. Hence, in an attempt to develop simple sequence repeat (SSR) markers, genomic libraries from Stylosanthes seabrana B.L. Maass & 't Mannetje (2n=2x=20) using 5' anchored degenerate microsatellite primers were constructed. Of the 76 new microsatellites, 21 functional primer pairs were designed. Because of the small number of primer pairs designed, 428 expressed sequence tag (EST) sequences from seven Stylosanthes species were also examined for SSR detection. Approximately 10% of sequences delivered functional primer pairs, and after redundancy elimination, 57 microsatellite repeats were selected. Tetranucleotides followed by trinucleotides were the major repeated sequences in Stylosanthes ESTs. In total, a robust set of 21 genomic-SSR (gSSR) and 20 EST-SSR (eSSR) markers were developed. These markers were analyzed for intraspecific diversity within 20 S. seabrana accessions and for their cross-species transferability. Mean expected (He) and observed (Ho) heterozygosity values with gSSR markers were 0.64 and 0.372, respectively, whereas with eSSR markers these were 0.297 and 0.214, respectively. Dendrograms having moderate bootstrap value (23%-94%) were able to distinguish all accessions of S. seabrana with gSSR markers, whereas eSSR markers showed 100% similarities between few accessions. The set of 21 gSSRs, from S. seabrana, and 20 eSSRs, from selected Stylosanthes species, with their high cross-species transferability (45% with gSSRs, 86% with eSSRs) will facilitate genetic improvement of Stylosanthes species globally.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号