首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   345篇
  免费   27篇
  2024年   2篇
  2023年   3篇
  2022年   10篇
  2021年   22篇
  2020年   4篇
  2019年   6篇
  2018年   15篇
  2017年   13篇
  2016年   15篇
  2015年   14篇
  2014年   17篇
  2013年   25篇
  2012年   50篇
  2011年   40篇
  2010年   16篇
  2009年   17篇
  2008年   20篇
  2007年   23篇
  2006年   16篇
  2005年   12篇
  2004年   9篇
  2003年   6篇
  2002年   8篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
排序方式: 共有372条查询结果,搜索用时 187 毫秒
341.

Introduction

Rabies is a fatal acute viral disease of the central nervous system, which is a serious public health problem in Asian and African countries. Based on the clinical presentation, rabies can be classified into encephalitic (furious) or paralytic (numb) rabies. Early diagnosis of this disease is particularly important as rabies is invariably fatal if adequate post exposure prophylaxis is not administered immediately following the bite.

Methods

In this study, we carried out a quantitative proteomic analysis of the human brain tissue from cases of encephalitic and paralytic rabies along with normal human brain tissues using an 8-plex isobaric tags for relative and absolute quantification (iTRAQ) strategy.

Results and conclusion

We identified 402 proteins, of which a number of proteins were differentially expressed between encephalitic and paralytic rabies, including several novel proteins. The differentially expressed molecules included karyopherin alpha 4 (KPNA4), which was overexpressed only in paralytic rabies, calcium calmodulin dependent kinase 2 alpha (CAMK2A), which was upregulated in paralytic rabies group and glutamate ammonia ligase (GLUL), which was overexpressed in paralytic as well as encephalitic rabies. We validated two of the upregulated molecules, GLUL and CAMK2A, by dot blot assays and further validated CAMK2A by immunohistochemistry. These molecules need to be further investigated in body fluids such as cerebrospinal fluid in a larger cohort of rabies cases to determine their potential use as antemortem diagnostic biomarkers in rabies. This is the first study to systematically profile clinical subtypes of human rabies using an iTRAQ quantitative proteomics approach.  相似文献   
342.

Purpose

Consequential Life Cycle Assessment (C-LCA) is a “system modelling approach in which activities in a product system are linked so that activities are included in the product system to the extent that they are expected to change as a consequence of a change in demand”. Hence, C-LCA focuses on micro-economic actions linked to macro-economic consequences, by identifying the (marginal) suppliers and technologies prone to be affected by variable scale changes in the demand of a product. Detecting the direct and indirect environmental effects due to changes in the production system is not an easy task. Hence, researchers have combined the consequential perspective with different econometric models. Therefore, the aim of this study is to assess an increase in biocrops cultivation in Luxembourg using three different consequential modelling approaches to understand the benefits, drawbacks and assumptions linked to each approach as applied to the case study selected.

Methods

Firstly, a partial equilibrium (PE) model is used to detect changes in land cultivation based on the farmers’ revenue maximisation. Secondly, another PE model is proposed, which considers a different perspective aiming at minimising a total adaptation cost (so-called opportunity cost) to satisfy a given new demand of domestically produced biofuel. Finally, the consequential system delimitation for agricultural LCA approach, as proposed by Schmidt (Int J Life Cycle Assess 13:350–364, 2008), is applied.

Results and discussion

The two PE models present complex shifts in crop rotation land use changes (LUCs), linked to the optimisation that is performed, while the remaining approach has limited consequential impact on changes in crop patterns since the expert opinion decision tree constitutes a simplification of the ongoing LUCs. However, environmental consequences in the latter were considerably higher due to intercontinental trade assumptions recommended by the experts that were not accounted for in the economic models. Environmental variations between the different scenarios due to LUCs vary based on the different expert- or computational-based assumptions. Finally, environmental consequences as compared with the current state-of-the-art are lame due to the limited impact of the shock within the global trade market.

Conclusions

The use of several consequential modelling approaches within the same study may help widen the interpretation of the advantages or risks of applying a specific change to a production system. In fact, different models may not only be good alternatives in terms of comparability of scenarios and assumptions, but there may also be room for complementing these within a unique framework to reduce uncertainties in an integrated way.  相似文献   
343.
Tuning ion coordination architectures to enable selective partitioning   总被引:1,自引:0,他引:1  
Varma S  Rempe SB 《Biophysical journal》2007,93(4):1093-1099
K+ ions seemingly permeate K-channels rapidly because channel binding sites mimic coordination of K+ ions in water. Highly selective ion discrimination should occur when binding sites form rigid cavities that match K+, but not the smaller Na+, ion size or when binding sites are composed of specific chemical groups. Although conceptually attractive, these views cannot account for critical observations: 1), K+ hydration structures differ markedly from channel binding sites; 2), channel thermal fluctuations can obscure sub-Angstr?m differences in ion sizes; and 3), chemically identical binding sites can exhibit diverse ion selectivities. Our quantum mechanical studies lead to a novel paradigm that reconciles these observations. We find that K-channels utilize a "phase-activated" mechanism where the local environment around the binding sites is tuned to sustain high coordination numbers (>6) around K+ ions, which otherwise are rarely observed in liquid water. When combined with the field strength of carbonyl ligands, such high coordinations create the electrical scenario necessary for rapid and selective K+ partitioning. Specific perturbations to the local binding site environment with respect to strongly selective K-channels result in altered K+/Na+ selectivities.  相似文献   
344.
Cytosolic phospholipase A2 is involved in several signal transduction pathways where it catalyses release of arachidonic acid from intracellular lipid membranes. Its membrane insertion is facilitated by its independently folding C2alpha domain, which is activated by the binding of two intracellular Ca2+ ions. However, the details of its membrane-insertion mechanism, including its Ca2+-activation mechanism, are not understood. There are several unresolved issues, including the following. There are two experimentally resolved structures of the Ca2+-activated state of its isolated C2alpha domain, one determined using x-ray crystallography and the other determined using NMR spectroscopy, which differ from each other significantly in the spatial region that inserts into the membrane. This by itself adds to ambiguities associated with investigations targeting its mechanism of membrane insertion. Furthermore, there is no experimentally determined structure of its cation-free state, which hinders investigations associated with its cation-activation mechanism. In this work, we generate several unrestrained molecular dynamics trajectories of its isolated C2alpha domain in solution (equivalent to approximately 60 ns) and investigate these issues. Our main results are as follows: a), the Ca2+ coordination scheme of the domain is consistent with the x-ray structure and with previous mutagenesis studies; b), the helical segment of the Ca2+-binding loop, CBL-I, undergoes nanosecond timescale flexing (but not an unwinding), as can be inferred from physiological temperature NMR data and in contrast to low temperature x-ray data; and c), removal of the two activating Ca2+ ions from their binding pockets does not alter the backbone structure of the domain, a result consistent with electron paramagnetic resonance data.  相似文献   
345.
Demineralised bone matrix (DBM) products are complex mixtures of proteins known to influence bone growth, turnover, and repair. They are used extensively in orthopaedic surgery, and are bioassayed in vivo prior to being used in clinical applications. Many factors contribute to the osteogenic potency of DBM, but the relative contributions of these factors, as well as the possibility of interactive effects, are not completely defined. The "gold standard" measure of the therapeutic value of DBM, the in vivo assay for ectopic bone formation, is costly, time-consuming, and involves the use of numerous animal subjects. We have measured the levels of five growth factors released by the collagenase digestion of DBM, and statistically related these levels with osteogenic potency as determined by a standard in vivo model, in order to determine which value or combination of values of growth factors best predict osteogenic activity. We conclude that the level of BMP-2 is the best single predictor of osteogenic potency, and that adding the values of other growth factors only minimally increases the predictive power of the BMP-2 measurement. A small, but significant, interactive effect between BMP-2 and BMP-7 was demonstrated. We present a statistical model based on growth factor (e.g. BMP-2) analysis that best predicts the in vivo assay score for DBM. This model allows the investigator to predict which lots of DBM are likely to exhibit in vivo bioactivity and which are not, thus reducing the need to conduct in vivo testing of insufficiently active lots of DBM. This model uses cut-point analysis to allow the user to assign an estimate of acceptable uncertainty with respect to the "gold standard" test. This procedure will significantly reduce the number of animal subjects used to test DBM products.  相似文献   
346.
Species conservation can be improved by knowledge of evolutionary and genetic history. Tigers are among the most charismatic of endangered species and garner significant conservation attention. However, their evolutionary history and genomic variation remain poorly known, especially for Indian tigers. With 70% of the world’s wild tigers living in India, such knowledge is critical. We re-sequenced 65 individual tiger genomes representing most extant subspecies with a specific focus on tigers from India. As suggested by earlier studies, we found strong genetic differentiation between the putative tiger subspecies. Despite high total genomic diversity in India, individual tigers host longer runs of homozygosity, potentially suggesting recent inbreeding or founding events, possibly due to small and fragmented protected areas. We suggest the impacts of ongoing connectivity loss on inbreeding and persistence of Indian tigers be closely monitored. Surprisingly, demographic models suggest recent divergence (within the last 20,000 years) between subspecies and strong population bottlenecks. Amur tiger genomes revealed the strongest signals of selection related to metabolic adaptation to cold, whereas Sumatran tigers show evidence of weak selection for genes involved in body size regulation. We recommend detailed investigation of local adaptation in Amur and Sumatran tigers prior to initiating genetic rescue.  相似文献   
347.
348.
Plasma glucose levels are maintained by a precise balance between glucose production and its use. Liver pyruvate kinase (PK) and phosphoenolpyruvate carboxykinase (PEPCK), 2 key enzymes of glycolysis and gluconeogenesis, respectively, play a crucial role in this glucose homeostasis along with skeletal muscle glucose transporter (GLUT4). In the diabetic state, this balance is disturbed owing to the absence of insulin, the principal factor controlling this regulation. In the present study, alloxan-diabetic animals having high glucose levels of more than 300 mmol/L have been taken and the administration of Trigonella seed powder (TSP) to the diabetic animals was assessed for its effect on the expression of PK and PEPCK in liver and GLUT4 distribution in skeletal muscle of alloxan-diabetic rats. TSP treatment to the diabetic animals resulted in a marked decrease in the plasma glucose levels. Trigonella treatment partially restored the altered expression of PK and PEPCK. TSP treatment also corrected the alterations in the distribution of GLUT4 in the skeletal muscle.  相似文献   
349.
Several groups, including our own, have found molecular dynamics (MD) calculations to result in the size of the pore of an outer membrane bacterial porin, OmpF, to be reduced relative to its size in the x-ray crystal structure. At the narrowest portion of its pore, loop L3 was found to move toward the opposite face of the pore, resulting in decreasing the cross-section area by a factor of approximately 2. In an earlier work, we computed the protonation states of titratable residues for this system and obtained values different from those that had been used in previous MD simulations. Here, we show that MD simulations carried out with these recently computed protonation states accurately reproduce the cross-sectional area profile of the channel lumen in agreement with the x-ray structure. Our calculations include the investigation of the effect of assigning different protonation states to the one residue, D(127), whose protonation state could not be modeled in our earlier calculation. We found that both assumptions of charge states for D(127) reproduced the lumen size profile of the x-ray structure. We also found that the charged state of D(127) had a higher degree of hydration and it induced greater mobility of polar side chains in its vicinity, indicating that the apparent polarizability of the D(127) microenvironment is a function of the D(127) protonation state.  相似文献   
350.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号