首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3334篇
  免费   261篇
  国内免费   1篇
  2024年   5篇
  2023年   37篇
  2022年   71篇
  2021年   159篇
  2020年   83篇
  2019年   100篇
  2018年   129篇
  2017年   94篇
  2016年   155篇
  2015年   206篇
  2014年   254篇
  2013年   247篇
  2012年   280篇
  2011年   285篇
  2010年   159篇
  2009年   134篇
  2008年   168篇
  2007年   153篇
  2006年   123篇
  2005年   125篇
  2004年   121篇
  2003年   115篇
  2002年   70篇
  2001年   31篇
  2000年   27篇
  1999年   20篇
  1998年   12篇
  1997年   15篇
  1996年   12篇
  1995年   8篇
  1994年   9篇
  1993年   5篇
  1992年   11篇
  1991年   9篇
  1989年   9篇
  1988年   7篇
  1987年   11篇
  1985年   5篇
  1984年   7篇
  1981年   7篇
  1980年   8篇
  1979年   5篇
  1978年   5篇
  1977年   6篇
  1976年   6篇
  1974年   11篇
  1973年   6篇
  1972年   5篇
  1971年   9篇
  1953年   4篇
排序方式: 共有3596条查询结果,搜索用时 15 毫秒
81.
Clade 2.2 Eurasian-lineage H5N1 highly pathogenic avian influenza viruses (HPAIVs) were first detected in Qinghai Lake, China, in 2005 and subsequently spread through Asia, Europe, and Africa. Importantly, these viruses carried a lysine at amino acid position 627 of the PB2 protein (PB2 627K), a known mammalian adaptation motif. Previous avian influenza virus isolates have carried glutamic acid in this position (PB2 627E), commonly described to restrict virus polymerase function in the mammalian host. We sought to examine the effect of PB2 627K on viral maintenance in the avian reservoir. Viruses constructed by reverse genetics were engineered to contain converse PB2 627K/E mutations in a Eurasian H5N1 virus (A/turkey/Turkey/5/2005 [Ty/05]) and, for comparison, a historical pre-Asian H5N1 HPAIV that naturally bears PB2 627E (A/turkey/England/50-92/1991 [50-92]). The 50-92 PB2 627K was genetically unstable during virus propagation, resulting in reversion to PB2 627E or the accumulation of the additional mutation PB2 628R and/or a synonymous mutation from an A to a G nucleotide at nucleotide position 1869 (PB2 A1869G). Intriguingly, PB2 628R and/or A1869G appeared to improve the genetic stability of 50-92 PB2 627K. However, the replication of 50-92 PB2 627K in conjunction with these stabilizing mutations was significantly restricted in experimentally infected chickens, where reversion to PB2 627E occurred. In contrast, no significant effects on viral fitness were observed for Ty/05 PB2 627E or 627K in in vitro or in vivo experiments. Our observations suggest that PB2 627K is supported in Eurasian-lineage viruses; in contrast, PB2 627K carries a significant fitness cost in the historical pre-Asian 50-92 virus.  相似文献   
82.
Understanding the regulation of airway epithelial barrier function is a new frontier in asthma and respiratory viral infections. Despite recent progress, little is known about how respiratory syncytial virus (RSV) acts at mucosal sites, and very little is known about its ability to influence airway epithelial barrier function. Here, we studied the effect of RSV infection on the airway epithelial barrier using model epithelia. 16HBE14o- bronchial epithelial cells were grown on Transwell inserts and infected with RSV strain A2. We analyzed (i) epithelial apical junction complex (AJC) function, measuring transepithelial electrical resistance (TEER) and permeability to fluorescein isothiocyanate (FITC)-conjugated dextran, and (ii) AJC structure using immunofluorescent staining. Cells were pretreated or not with protein kinase D (PKD) inhibitors. UV-irradiated RSV served as a negative control. RSV infection led to a significant reduction in TEER and increase in permeability. Additionally it caused disruption of the AJC and remodeling of the apical actin cytoskeleton. Pretreatment with two structurally unrelated PKD inhibitors markedly attenuated RSV-induced effects. RSV induced phosphorylation of the actin binding protein cortactin in a PKD-dependent manner. UV-inactivated RSV had no effect on AJC function or structure. Our results suggest that RSV-induced airway epithelial barrier disruption involves PKD-dependent actin cytoskeletal remodeling, possibly dependent on cortactin activation. Defining the mechanisms by which RSV disrupts epithelial structure and function should enhance our understanding of the association between respiratory viral infections, airway inflammation, and allergen sensitization. Impaired barrier function may open a potential new therapeutic target for RSV-mediated lung diseases.  相似文献   
83.
Non-denaturing FISH (ND-FISH) was used to compare the distribution of four simple sequence repeats (SSRs)—(AG) n , (AAG) n , (ACT) n and (ATC) n —in somatic root tip metaphase spreads of 12 barley (H. vulgare ssp. vulgare) cultivars, seven lines of their wild progenitor H. vulgare ssp. spontaneum, and four lines of their close relative H. bulbosum, to determine whether the range of molecular diversity shown by these highly polymorphic sequences is reflected at the chromosome level. In both, the cultivated and wild barleys, clusters of AG and ATC repeats were invariant. In contrast, clusters of AAG and ACT showed polymorphism. Karyotypes were prepared after the identification of their seven pairs of homologous chromosomes. Variation between these homologues was only observed in one wild accession that showed the segregation of a reciprocal translocation involving chromosomes 5H and 7H. The two subspecies of H. vulgare analysed were no different in terms of their SSRs. Only AAG repeats were found clustered strongly on the chromosomes of all lines of H. bulbosum examined. Wide variation was seen between homologous chromosomes within and across these lines. These results are the first to provide insight into the cytogenetic diversity of SSRs in barley and its closest relatives. Differences in the abundance and distribution of each SSR analysed, between H. vulgare and H. bulbosum, suggest that these species do not share the same H genome, and support the idea that these species are not very closely related. Southern blotting experiments revealed the complex organization of these SSRs, supporting the findings made with ND-FISH.  相似文献   
84.
Bacillus thuringiensis is an important source of insect resistance traits in commercial crops. In an effort to prolong B. thuringiensis trait durability, insect resistance management programs often include combinations of insecticidal proteins that are not cross resistant or have demonstrable differences in their site of action as a means to mitigate the development of resistant insect populations. In this report, we describe the activity spectrum of a novel B. thuringiensis Cry protein, Cry1Bh1, against several lepidopteran pests, including laboratory-selected B. thuringiensis-resistant strains of Ostrinia nubilalis and Heliothis virescens and progeny of field-evolved B. thuringiensis-resistant strains of Plutella xylostella and Spodoptera frugiperda. Cry1Bh1 is active against susceptible and B. thuringiensis-resistant colonies of O. nubilalis, P. xylostella, and H. virescens in laboratory diet-based assays, implying a lack of cross-resistance in these insects. However, Cry1Bh1 is not active against susceptible or Cry1F-resistant S. frugiperda. Further, Cry1Bh1 does not compete with Cry1Fa or Cry1Ab for O. nubilalis midgut brush border membrane binding sites. Cry1Bh1-expressing corn, while not completely resistant to insect damage, provided significantly better leaf protection against Cry1Fa-resistant O. nubilalis than did Cry1Fa-expressing hybrid corn. The lack of cross-resistance with Cry1Ab and Cry1Fa along with independent membrane binding sites in O. nubilalis makes Cry1Bh1 a candidate to further optimize for in-plant resistance to this pest.  相似文献   
85.
Seedlings of two Indica rice (Oryza sativa L.) cvs. HUR-105 and Vandana, differing in Al-tolerance were used to identify the key mechanisms involved in their differential behaviour towards Al toxicity. Cv. HUR-105 appeared to be Al sensitive by showing significant reduction (p ≤ 0.01) in root/shoot length, fresh weight, dry weight and water content in presence of 421 μM Al3+ in growth medium whereas cv. Vandana appeared to be fairly Al3+ tolerant. A conspicuous and significant reduction in dry weight of root and shoot was observed in Al sensitive cv. HUR-105 with 178 μM Al3+ treatment for 3 days. Al was readily taken up by the roots and transported to shoots in both the rice cultivars. Localization of absorbed Al was always greater in roots than in shoots. Our results of the production of reactive oxygen species (ROS) H2O2 and O2 .? and activities of major antioxidant enzymes such as total superoxide dismutase (SOD), Cu/Zn SOD, Mn SOD, Fe SOD, catalase (CAT) and guaiacol peroxidase revealed Al induced higher oxidative stress, greater production of ROS and lesser capacity to scavenge ROS in cv. HUR-105 than Vandana. With Al treatment, higher oxidative stress was noted in shoots than in roots. Greatly enhanced activities of SOD (especially Fe and Mn SOD) and CAT in Al treated seedlings of cv. Vandana suggest the role of these enzymes in Al tolerance. Furthermore, a marked presence of Fe SOD in roots and shoots of the seedlings of Al tolerant cv. Vandana and its significant (p ≤ 0.01) increase in activity due to Al-treatment, appears to be the unique feature of this cultivar and indicates a vital role of Fe SOD in Al-tolerance in rice.  相似文献   
86.
87.
88.
Weather variations change stream hydrological conditions, affecting the stream function. A seasonal study in three well-conserved first-order Pampean streams was carried out to test the hypothesis that rainfalls are the main drivers of whole-stream metabolism, through their effects on hydrology. We estimated the stream metabolism and metabolic contribution of six relevant communities (angiosperms, macroalgae, seston, epiphyton, epipelon, and hyporheos) during late spring, summer, and winter and examined the relation between gross primary production (GPP) and photosynthetic active radiation (PAR). Our results showed that the decrease in available streambed light due to the dissolved organic carbon after rainfalls was the main factor related to the decrease in the ecosystem and community metabolisms. For instance, GPP oscillated from ~10 gO2 m?2 d?1 in early spring (low flows) to ~3 gO2 m?2 d?1 in summer (high flows). Ecosystem respiration (ER) was less sensitive than GPP to rainfalls due to the increase of hyporheic respiration. Rainfalls also caused a significant loss of downstream macroalgal biomass. At a day scale, the high PAR of late spring and summer saturated GPP during the afternoon, and the low temperature of winter mornings constrained GPP. Hence, the knowledge of weather changes is key to understanding the main hydrological drivers of stream function.  相似文献   
89.
In Arabidopsis thaliana, light signals modulate the defences against bacteria. Here we show that light perceived by the LOV domain‐regulated two‐component system (Pst–Lov) of Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) modulates virulence against A. thaliana. Bioinformatic analysis and the existence of an episomal circular intermediate indicate that the locus encoding Pst–Lov is present in an active genomic island acquired by horizontal transfer. Strains mutated at Pst–Lov showed enhanced growth on minimal medium and in leaves of A. thaliana exposed to light, but not in leaves incubated in darkness or buried in the soil. Pst–Lov repressed the expression of principal and alternative sigma factor genes and their downstream targets linked to bacterial growth, virulence and quorum sensing, in a strictly light‐dependent manner. We propose that the function of Pst–Lov is to distinguish between soil (dark) and leaf (light) environments, attenuating the damage caused to host tissues while releasing growth out of the host. Therefore, in addition to its direct actions via photosynthesis and plant sensory receptors, light may affect plants indirectly via the sensory receptors of bacterial pathogens.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号