首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2598篇
  免费   227篇
  国内免费   1篇
  2024年   6篇
  2023年   34篇
  2022年   74篇
  2021年   141篇
  2020年   86篇
  2019年   98篇
  2018年   95篇
  2017年   66篇
  2016年   127篇
  2015年   164篇
  2014年   201篇
  2013年   192篇
  2012年   204篇
  2011年   223篇
  2010年   131篇
  2009年   94篇
  2008年   138篇
  2007年   114篇
  2006年   100篇
  2005年   107篇
  2004年   110篇
  2003年   76篇
  2002年   62篇
  2001年   7篇
  2000年   13篇
  1999年   6篇
  1998年   8篇
  1997年   9篇
  1996年   9篇
  1995年   8篇
  1994年   6篇
  1992年   9篇
  1991年   3篇
  1990年   6篇
  1984年   4篇
  1983年   5篇
  1979年   3篇
  1978年   5篇
  1975年   2篇
  1973年   8篇
  1972年   3篇
  1971年   2篇
  1966年   4篇
  1965年   7篇
  1964年   4篇
  1963年   3篇
  1961年   3篇
  1958年   2篇
  1918年   2篇
  1908年   2篇
排序方式: 共有2826条查询结果,搜索用时 15 毫秒
921.
922.
Urate and myeloperoxidase (MPO) are associated with adverse outcomes in cardiovascular disease. In this study, we assessed whether urate is a likely physiological substrate for MPO and if the products of their interaction have the potential to exacerbate inflammation. Urate was readily oxidized by MPO and hydrogen peroxide to 5-hydroxyisourate, which decayed to predominantly allantoin. The redox intermediates of MPO were reduced by urate with rate constants of 4.6 × 10(5) M(-1) s(-1) for compound I and 1.7 × 10(4) M(-1) s(-1) for compound II. Urate competed with chloride for oxidation by MPO and at hyperuricemic levels is expected to be a substantive substrate for the enzyme. Oxidation of urate promoted super-stoichiometric consumption of glutathione, which indicates that it is converted to a free radical intermediate. In combination with superoxide and hydrogen peroxide, MPO oxidized urate to a reactive hydroperoxide. This would form by addition of superoxide to the urate radical. Urate also enhanced MPO-dependent consumption of nitric oxide. In human plasma, stimulated neutrophils produced allantoin in a reaction dependent on the NADPH oxidase, MPO and superoxide. We propose that urate is a physiological substrate for MPO that is oxidized to the urate radical. The reactions of this radical with superoxide and nitric oxide provide a plausible link between urate and MPO in cardiovascular disease.  相似文献   
923.
Allergic diseases, including asthma and food allergies, are an increasing health concern. Immunotherapy is an effective therapeutic approach for many allergic diseases but requires long dose escalation periods and has a high risk of adverse reactions, particularly in food allergy. New methods to safely induce Ag-specific tolerance could improve the clinical approach to allergic disease. We hypothesized that Ag-specific tolerance induced by the i.v. injection of Ags attached to the surface of syngeneic splenic leukocytes (Ag-coupled splenocytes [Ag-SPs]) with the chemical cross-linking agent ethylene-carbodiimide, which effectively modulate Th1/Th17 diseases, may also safely and efficiently induce tolerance in Th2-mediated mouse models of allergic asthma and food allergy. Mice were tolerized with Ag-SP before or after initiation of OVA/alum-induced allergic airway inflammation or peanut-induced food allergy. The effects on disease pathology and Th2-directed cytokine and Ab responses were studied. Ag-SP tolerance prevented disease development in both models and safely tolerized T cell responses in an Ag-specific manner in presensitized animals. Prophylactically, Ag-SP efficiently decreased local and systemic Th2 responses, eosinophilia, and Ag-specific IgE. Interestingly, Ag-SP induced Th2 tolerance was found to be partially dependent on the function of CD25(+) regulatory T cells in the food allergy model, but was regulatory T cell independent in the model of allergic airway inflammation. We demonstrate that Ag-SP tolerance can be rapidly, safely, and efficiently induced in murine models of allergic disease, highlighting a potential new Ag-specific tolerance immunotherapy for Th2-associated allergic diseases.  相似文献   
924.
The acute effects of zinc (Zn) were evaluated in the symbiont-bearing foraminifer Amphistegina lessonii from the Fernando de Noronha Archipelago (Northeastern Brazil). Foraminifers were acutely (48 h) exposed to dissolved Zn concentrations ranging from 9.5 to 93.4 μg Zn/l. Endpoints analyzed included mortality, visual alterations (white spots and dark-brown areas in the test), oxidative stress biomarkers (reactive oxygen species generation, lipid peroxidation and total superoxide dismutase activity), and concentration of metallothionein-like proteins in whole individuals after Zn exposure. No significant mortality was observed during the 48-h exposure period to waterborne Zn. However, a significant percentage of individuals showed visual alterations (white spots and/or dark-brown areas in the test) after 24 and 48 h of Zn exposure. In fact, a significant positive correlation between this endpoint and dissolved Zn concentrations was observed for both times of exposure. Based on this endpoint, the 24-h and 48-h EC50 values and their corresponding 95% confidence intervals for total measured Zn concentrations were calculated as 112.2 (86.5 - 199.5) and 43.6 (34.9 - 57.3) μg Zn/l, respectively. Based on the dissolved Zn concentrations, they were 100.7 (75.3 - 175.9) and 38.2 (29.7 - 49.4) μg Zn/l, respectively. Therefore, a significant increase in Zn toxicity was observed with increasing time of exposure. After 48 h of Zn exposure, whole body antioxidant capacity was lower in normal-appearing individuals than in those at the initial stage of bleaching. Increases in lipid peroxidation, metallothionein-like protein concentration and total SOD activity was observed at a greater extent in pale/partly-bleached individuals associated with an increased Zn toxicity measured as visual alterations. These findings suggest that an activation of some components of the antioxidant system occurred in A. lessonii to counteract the oxidative stress induced by Zn exposure, and consequently avoid a possible complete loss of the symbiont.  相似文献   
925.
Hepatitis C virus (HCV) infection causes significant morbidity and mortality worldwide. T cells play a central role in HCV clearance; however, there is currently little understanding of whether the disease outcome in HCV infection is influenced by the choice of TCR repertoire. TCR repertoires used against two immunodominant HCV determinants--the highly polymorphic, HLA-B*0801 restricted (1395)HSKKKCDEL(1403) (HSK) and the comparatively conserved, HLA-A*0101-restricted, (1435)ATDALMTGY(1443) (ATD)--were analyzed in clearly defined cohorts of HLA-matched, HCV-infected individuals with persistent infection and HCV clearance. In comparison with ATD, TCR repertoire selected against HSK was more narrowly focused, supporting reports of mutational escape in this epitope, in persistent HCV infection. Notwithstanding the Ag-driven divergence, T cell repertoire selection against either Ag was comparable in subjects with diverse disease outcomes. Biased T cell repertoires were observed early in infection and were evident not only in persistently infected individuals but also in subjects with HCV clearance, suggesting that these are not exclusively characteristic of viral persistence. Comprehensive clonal analysis of Ag-specific T cells revealed widespread use of public TCRs displaying a high degree of predictability in TRBV/TRBJ gene usage, CDR3 length, and amino acid composition. These public TCRs were observed against both ATD and HSK and were shared across diverse disease outcomes. Collectively, these observations indicate that repertoire diversity rather than particular Vβ segments are better associated with HCV persistence/clearance in humans. Notably, many of the anti-HCV TCRs switched TRBV and TRBJ genes around a conserved, N nucleotide-encoded CDR3 core, revealing TCR sequence mosaicism as a potential host mechanism to combat this highly variant virus.  相似文献   
926.
During paramyxovirus entry into a host cell, receptor engagement by a specialized binding protein triggers conformational changes in the adjacent fusion protein (F), leading to fusion between the viral and cell membranes. According to the existing paradigm of paramyxovirus membrane fusion, the initial activation of F by the receptor binding protein sets off a spring-loaded mechanism whereby the F protein progresses independently through the subsequent steps in the fusion process, ending in membrane merger. For human parainfluenza virus type 3 (HPIV3), the receptor binding protein (hemagglutinin-neuraminidase [HN]) has three functions: receptor binding, receptor cleaving, and activating F. We report that continuous receptor engagement by HN activates F to advance through the series of structural rearrangements required for fusion. In contrast to the prevailing model, the role of HN-receptor engagement in the fusion process is required beyond an initiating step, i.e., it is still required even after the insertion of the fusion peptide into the target cell membrane, enabling F to mediate membrane merger. We also report that for Nipah virus, whose receptor binding protein has no receptor-cleaving activity, the continuous stimulation of the F protein by a receptor-engaged binding protein is key for fusion. We suggest a general model for paramyxovirus fusion activation in which receptor engagement plays an active role in F activation, and the continued engagement of the receptor binding protein is essential to F protein function until the onset of membrane merger. This model has broad implications for the mechanism of paramyxovirus fusion and for strategies to prevent viral entry.  相似文献   
927.
In vivo mutation assays based on the Pig-a null phenotype, that is, the absence of cell surface glycosylphosphatidylinositol (GPI) anchored proteins such as CD59, have been described. This work has been accomplished with hematopoietic cells, most often rat peripheral blood erythrocytes (RBCs) and reticulocytes (RETs). The current report describes new sample processing procedures that dramatically increase the rate at which cells can be evaluated for GPI anchor deficiency. This new method was applied to blood specimens from vehicle, 1,3-propane sultone, melphalan, and N-ethyl-N-nitrosourea treated Sprague Dawley rats. Leukocyte- and platelet-depleted blood samples were incubated with anti-CD59-phycoerythrin (PE) and anti-CD61-PE, and then mixed with anti-PE paramagnetic particles and Counting Beads (i.e., fluorescent microspheres). An aliquot of each specimen was stained with SYTO 13 and flow cytometric analysis was performed to determine RET percentage, RET:Counting Bead ratio, and RBC:Counting Bead ratio. The major portion of these specimens were passed through ferromagnetic columns that were suspended in a magnetic field, thereby depleting each specimen of wild-type RBCs (and platelets) based on their association with anti-PE paramagnetic particles. The eluates were concentrated via centrifugation and the resulting suspensions were stained with SYTO 13 and analyzed on the flow cytometer to determine mutant phenotype RET:Counting Bead and mutant phenotype RBC:Counting Bead ratios. The ratios obtained from pre- and post-column analyses were used to derive mutant phenotype RET and mutant phenotype RBC frequencies. Results from vehicle control and genotoxicant-treated rats are presented that indicate the scoring system is capable of returning reliable mutant phenotype cell frequencies. Using this wild-type cell depletion strategy, it was possible to interrogate ≥ 3 million RETs and ≥ 100 million RBCs per rat in approximately 7 min. Beyond considerably enhancing the throughput capacity of the analytical platform, these blood-processing procedures were also shown to enhance the precision of the measurements.  相似文献   
928.
929.
930.
Nigeria continues to experience ever increasing annual outbreaks of Lassa fever (LF). The World Health Organization has recently declared Lassa virus (LASV) as a priority pathogen for accelerated research leading to a renewed international effort to develop relevant animal models of disease and effective countermeasures to reduce LF morbidity and mortality in endemic West African countries. A limiting factor in evaluating medical countermeasures against LF is a lack of well characterized animal models outside of those based on infection with LASV strain Josiah originating form Sierra Leone, circa 1976. Here we genetically characterize five recent LASV isolates collected from the 2018 outbreak in Nigeria. Three isolates were further evaluated in vivo and despite being closely related and from the same spatial / geographic region of Nigeria, only one of the three isolates proved lethal in strain 13 guinea pigs and non-human primates (NHP). Additionally, this isolate exhibited atypical pathogenesis characteristics in the NHP model, most notably respiratory failure, not commonly described in hemorrhagic cases of LF. These results suggest that there is considerable phenotypic heterogeneity in LASV infections in Nigeria, which leads to a multitude of pathogenesis characteristics that could account for differences between subclinical and lethal LF infections. Most importantly, the development of disease models using currently circulating LASV strains in West Africa are critical for the evaluation of potential vaccines and medical countermeasures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号