全文获取类型
收费全文 | 2153篇 |
免费 | 171篇 |
国内免费 | 1篇 |
专业分类
2325篇 |
出版年
2024年 | 5篇 |
2023年 | 32篇 |
2022年 | 65篇 |
2021年 | 136篇 |
2020年 | 70篇 |
2019年 | 81篇 |
2018年 | 82篇 |
2017年 | 63篇 |
2016年 | 107篇 |
2015年 | 140篇 |
2014年 | 183篇 |
2013年 | 161篇 |
2012年 | 186篇 |
2011年 | 193篇 |
2010年 | 105篇 |
2009年 | 81篇 |
2008年 | 112篇 |
2007年 | 93篇 |
2006年 | 82篇 |
2005年 | 88篇 |
2004年 | 80篇 |
2003年 | 65篇 |
2002年 | 44篇 |
2001年 | 3篇 |
2000年 | 8篇 |
1999年 | 5篇 |
1998年 | 7篇 |
1997年 | 9篇 |
1996年 | 8篇 |
1995年 | 4篇 |
1994年 | 5篇 |
1993年 | 2篇 |
1992年 | 6篇 |
1991年 | 1篇 |
1990年 | 2篇 |
1989年 | 1篇 |
1988年 | 2篇 |
1986年 | 2篇 |
1984年 | 1篇 |
1982年 | 1篇 |
1978年 | 2篇 |
1977年 | 1篇 |
1967年 | 1篇 |
排序方式: 共有2325条查询结果,搜索用时 11 毫秒
41.
KE Lemasters Y Blech-Hermoni SJ Stillwagon NA Vajda AN Ladd 《BMC developmental biology》2012,12(1):22
ABSTRACT: BACKGROUND: Valvulogenesis and septation in the developing heart depend on the formation and remodeling of endocardial cushions in the atrioventricular canal (AVC) and outflow tract (OFT). These cushions are invaded by a subpopulation of endocardial cells that undergo an epithelial-mesenchymal transition in response to paracrine and autocrine transforming growth factor beta (TGFbeta) signals. We previously demonstrated that the RNA binding protein muscleblind-like 1 (MBNL1) is expressed specifically in the cushion endocardium, and knockdown of MBNL1 in stage 14 embryonic chicken AVC explants enhances TGFbeta-dependent endocardial cell invasion. RESULTS: In this study, we demonstrate that the effect of MBNL1 knockdown on invasion remains dependent on TGFbeta3 after it is no longer required to induce basal levels of invasion. TGFbeta3, but not TGFbeta2, levels are elevated in medium conditioned by MBNL1-depleted AVC explants. TGFbeta3 is elevated even when the myocardium is removed, indicating that MBNL1 modulates autocrine TGFbeta3 production in the endocardium. More TGFbeta3-positive cells are observed in the endocardial monolayer following MBNL1 knockdown. Addition of exogenous TGFbeta3 to AVC explants recapitulates the effects of MBNL1 knockdown. Time course experiments demonstrate that knockdown of MBNL1 induces precocious TGFbeta3 secretion, and early exposure to excess TGFbeta3 induces precocious invasion. MBNL1 expression precedes TGFbeta3 in the AVC endocardium, consistent with a role in preventing precocious autocrine TGFbeta3 signaling. The stimulatory effects of MBNL1 knockdown on invasion are lost in stage 16 AVC explants. Knockdown of MBNL1 in OFT explants similarly enhances cell invasion, but not activation. TGFbeta is necessary and sufficient to mediate this effect. CONCLUSIONS: Taken together, these data support a model in which MBNL1 negatively regulates cell invasion in the endocardial cushions by restricting the magnitude and timing of endocardial-derived TGFbeta3 production. 相似文献
42.
43.
Carbapenam synthetase (hereafter named CPS) catalyzes the formation of the beta-lactam ring in the biosynthetic pathway to (5R)-carbapen-2-em-3-carboxylate, the simplest of the carbapenem antibiotics. Kinetic studies showed remarkable tolerance to substrate stereochemistry in the turnover rate but did not distinguish between chemistry and a nonchemical step such as product release or conformational change as being rate-determining. Also, X-ray structural studies and modest sequence homology to beta-lactam synthetase, an enzyme that catalyzes the formation of a monocyclic beta-lactam ring in a similar ATP/Mg2+-dependent reaction, implicate K443 as an essential residue for substrate binding and intermediate stabilization. In these experiments, we use pH-rate profiles, deuterium solvent isotope effects, and solvent viscosity measurements to examine the rate-limiting step in this complex overall process of substrate adenylation and intramolecular ring formation. Mutagenesis and chemical rescue demonstrate that K443 is the general acid visible in the pH-rate profile of the wild-type CPS-catalyzed reaction. On the basis of these results, we propose a mechanism in which the rate-limiting step is beta-lactam ring formation coupled to a protein conformational change and underscore the role of K443 throughout the reaction. 相似文献
44.
45.
A mark‐resight analysis under Pollock's robust design was applied to Indo‐Pacific bottlenose dolphins Tursiops aduncus in the Swatch‐of‐No‐Ground (SoNG) submarine canyon, Bangladesh, during the winter seasons of 2005–2009. Information from sightings of photo‐identified individuals (1,144) and unmarked individuals generated abundance estimates of 1,701 (95% confidence interval [CI]= 1,533–1,888), 1,927 (95% CI = 1,851–2,006), 2,150 (95% CI = 1,906–2,425), and 2,239 (95% CI = 1,985–2,524) individuals for seasons 1–4, respectively. This makes the population among the largest assessed of the species. Overall apparent survival was estimated as 0.958 (95% CI = 0.802–0.992). Interseasonal probabilities of transitioning to an unobservable state were estimated as 0.045, 0.363, and 0.300 for years 1–2, 2–3, and 3–4, respectively, and the overall probability of remaining in an unobservable state was 0.688. These probabilities, together with an apparent increase in abundance during the study period, indicate that the identified dolphins are part of a larger superpopulation moving throughout a more extensive geographic area. Of the photo‐identified dolphins, 28.2% exhibited injuries related to entanglements with fishing gear. This implies a strong potential for fatal interactions that could jeopardize the conservation status of the population, which otherwise appears favorable. 相似文献
46.
Yaritza Escamilla Casey A. Hughes Jan Abendroth David M. Dranow Samantha Balboa Frank B. Dean James M. Bullard 《Protein science : a publication of the Protein Society》2020,29(4):905-918
Pseudomonas aeruginosa has a high potential for developing resistance to multiple antibiotics. The gene (glnS) encoding glutaminyl‐tRNA synthetase (GlnRS) from P. aeruginosa was cloned and the resulting protein characterized. GlnRS was kinetically evaluated and the KM and kcatobs, governing interactions with tRNA, were 1.0 μM and 0.15 s?1, respectively. The crystal structure of the α2 form of P. aeruginosa GlnRS was solved to 1.9 Å resolution. The amino acid sequence and structure of P. aeruginosa GlnRS were analyzed and compared to that of GlnRS from Escherichia coli. Amino acids that interact with ATP, glutamine, and tRNA are well conserved and structure overlays indicate that both GlnRS proteins conform to a similar three‐dimensional structure. GlnRS was developed into a screening platform using scintillation proximity assay technology and used to screen ~2,000 chemical compounds. Three inhibitory compounds were identified and analyzed for enzymatic inhibition as well as minimum inhibitory concentrations against clinically relevant bacterial strains. Two of the compounds, BM02E04 and BM04H03, were selected for further studies. These compounds displayed broad‐spectrum antibacterial activity and exhibited moderate inhibitory activity against mutant efflux deficient strains of P. aeruginosa and E. coli. Growth of wild‐type strains was unaffected, indicating that efflux was likely responsible for the lack of sensitivity. The global mode of action was determined using time‐kill kinetics. BM04H03 did not inhibit the growth of human cell cultures at any concentration and BM02E04 only inhibit cultures at the highest concentration tested (400 μg/ml). In conclusion, GlnRS from P. aeruginosa is shown to have a structure similar to that of E. coli GlnRS and two natural product compounds were identified as inhibitors of P. aeruginosa GlnRS with the potential for utility as lead candidates in antibacterial drug development in a time of increased antibiotic resistance. 相似文献
47.
Cassandra S. James Stephen J. Mackay Angela H. Arthington Samantha J. Capon Anna Barnes Ben Pearson 《Ecology and evolution》2016,6(16):5950-5963
The primary objective of this study was to test the relevance of hydrological classification and class differences to the characteristics of woody riparian vegetation in a subtropical landscape in Queensland, Australia. We followed classification procedures of the environmental flow framework ELOHA – Ecological Limits of Hydrologic Alteration. Riparian surveys at 44 sites distributed across five flow classes recorded 191 woody riparian species and 15, 500 individuals. There were differences among flow classes for riparian species richness, total abundance, and abundance of regenerating native trees and shrubs. There were also significant class differences in the occurrence of three common tree species, and 21 indicator species (mostly native taxa) further distinguished the vegetation characteristics of each flow class. We investigated the influence of key drivers of riparian vegetation structure (climate, depth to water table, stream‐specific power, substrate type, degree of hydrologic alteration, and land use) on riparian vegetation. Patterns were explained largely by climate, particularly annual rainfall and temperature. Strong covarying drivers (hydrology and climate) prevented us from isolating the independent influences of these drivers on riparian assemblage structure. The prevalence of species considered typically rheophytic in some flow classes implies a more substantial role for flow in these classes but needs further testing. No relationships were found between land use and riparian vegetation composition and structure. This study demonstrates the relevance of flow classification to the structure of riparian vegetation in a subtropical landscape, and the influence of covarying drivers on riparian patterns. Management of environmental flows to influence riparian vegetation assemblages would likely have most potential in sites dominated by rheophytic species where hydrological influences override other controls. In contrast, where vegetation assemblages are dominated by a diverse array of typical rainforest species, and other factors including broad‐scale climatic gradients and topographic variables have greater influence than hydrology, riparian vegetation is likely to be less responsive to environmental flow management. 相似文献
48.
Jerod A. Merkle Hall Sawyer Kevin L. Monteith Samantha P. H. Dwinnell Gary L. Fralick Matthew J. Kauffman 《Ecology letters》2019,22(11):1797-1805
From fine‐scale foraging to broad‐scale migration, animal movement is shaped by the distribution of resources. There is mounting evidence, however, that learning and memory also guide movement. Although migratory mammals commonly track resource waves, how resource tracking and memory guide long‐distance migration has not been reconciled. We examined these hypotheses using movement data from four populations of migratory mule deer (n = 91). Spatial memory had an extraordinary influence on migration, affecting movement 2–28 times more strongly than tracking spring green‐up or autumn snow depth. Importantly, with only an ability to track resources, simulated deer were unable to recreate empirical migratory routes. In contrast, simulated deer with memory of empirical routes used those routes and obtained higher foraging benefits. For migratory terrestrial mammals, spatial memory provides knowledge of where seasonal ranges and migratory routes exist, whereas resource tracking determines when to beneficially move within those areas. 相似文献
49.
Localization of the microtubule end binding protein EB1 reveals alternative pathways of spindle development in Arabidopsis suspension cells 下载免费PDF全文
In a previous study on Arabidopsis thaliana suspension cells transiently infected with the microtubule end binding protein AtEB1a-green fluorescent protein (GFP), we reported that interphase microtubules grow from multiple sites dispersed over the cortex, with plus ends forming the characteristic comet-like pattern. In this study, AtEB1a-GFP was used to study the transitions of microtubule arrays throughout the division cycle of cells lacking a defined centrosome. During division, the dispersed origin of microtubules was replaced by a more focused pattern with the plus end comets growing away from sites associated with the nuclear periphery. The mitotic spindle then evolved in two quite distinct ways depending on the presence or absence of the preprophase band (PPB): the cells displaying outside-in as well as inside-out mitotic pathways. In those cells possessing a PPB, the fusion protein labeled material at the nuclear periphery that segregated into two polar caps, perpendicular to the PPB, before nuclear envelope breakdown (NEBD). These polar caps then marked the spindle poles upon NEBD. However, in the population of cells without PPBs, there was no prepolarization of material at the nuclear envelope before NEBD, and the bipolar spindle only emerged clearly after NEBD. Such cells had variable spindle orientations and enhanced phragmoplast mobility, suggesting that the PPB is involved in a polarization event that promotes early spindle pole morphogenesis and subsequent positional stability during division. Astral-like microtubules are not usually prominent in plant cells, but they are clearly seen in these Arabidopsis cells, and we hypothesize that they may be involved in orienting the division plane, particularly where the plane is not determined before division. 相似文献
50.
Ballabio E Regan R Garimberti E Harbott J Bradtke J Teigler-Schlegel A Biondi A Cazzaniga G Giudici G Wainscoat JS Boultwood J Bridger JM Knight SJ Tosi S 《PloS one》2011,6(6):e20607
Leukaemia is often associated with genetic alterations such as translocations, amplifications and deletions, and recurrent chromosome abnormalities are used as markers of diagnostic and prognostic relevance. However, a proportion of acute myeloid leukaemia (AML) cases have an apparently normal karyotype despite comprehensive cytogenetic analysis. Based on conventional cytogenetic analysis of banded chromosomes, we selected a series of 23 paediatric patients with acute myeloid leukaemia and performed whole genome array comparative genome hybridization (aCGH) using DNA samples derived from the same patients. Imbalances involving large chromosomal regions or entire chromosomes were detected by aCGH in seven of the patients studied. Results were validated by fluorescence in situ hybridization (FISH) to both interphase nuclei and metaphase chromosomes using appropriate bacterial artificial chromosome (BAC) probes. The majority of these copy number alterations (CNAs) were confirmed by FISH and found to localize to the interphase rather than metaphase nuclei. Furthermore, the proliferative states of the cells analyzed by FISH were tested by immunofluorescence using an antibody against the proliferation marker pKi67. Interestingly, these experiments showed that, in the vast majority of cases, the changes appeared to be confined to interphase nuclei in a non-proliferative status. 相似文献