首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   738篇
  免费   37篇
  国内免费   3篇
  778篇
  2024年   2篇
  2023年   9篇
  2022年   22篇
  2021年   44篇
  2020年   20篇
  2019年   35篇
  2018年   36篇
  2017年   21篇
  2016年   22篇
  2015年   35篇
  2014年   35篇
  2013年   73篇
  2012年   65篇
  2011年   57篇
  2010年   23篇
  2009年   21篇
  2008年   35篇
  2007年   37篇
  2006年   27篇
  2005年   26篇
  2004年   23篇
  2003年   18篇
  2002年   12篇
  2001年   8篇
  2000年   2篇
  1999年   9篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   5篇
  1992年   2篇
  1991年   4篇
  1990年   9篇
  1989年   2篇
  1988年   3篇
  1987年   5篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   4篇
  1981年   1篇
  1980年   3篇
  1977年   1篇
  1976年   1篇
  1975年   3篇
  1974年   1篇
  1973年   1篇
排序方式: 共有778条查询结果,搜索用时 15 毫秒
771.
A variety of nucleic acid synthetic and degradative enzymes and proteases are shown to bind to trityl sepharose columns and, for the most part, retain moderate amounts of activity for periods of days to weeks. Non-covalent hydrophobic interactions are believed to be largely responsible for the observed binding and maintenance of activity. In addition the hydrophobic binding mechanism of poly A to trityl sepharose columns under a variety of conditions is compared with that to nitrocellulose columns and contrasted with that of dT cellulose columns.  相似文献   
772.
773.
A rapid identification method involving targeted DNA sequencing of genomic or cDNA clones using mixed (degenerate) probes as primers is described. The strategy involves the use of the same mixed probes for sequencing the clone of interest as they are used for screening the DNA libraries. Probes containing up to 512 mixes do not interfere in priming and yield completely faithful replication of the template DNA.  相似文献   
774.
AbstractUntreated wastewater contains toxic amounts of heavy metals such as chromium (Cr), which poses a serious threat to the growth and physiology of plants when used in irrigation. Though, Cr is among the most widespread toxic trace elements found in agricultural soils due to various anthropogenic activities. To explore the interactive effects of micronutrients with amino acid chelators [iron-lysine (Fe-lys) and zinc-lysine (Zn-lys)], pot experiments were conducted in a controlled environment, using spinach (Spinacia oleracea L.) plant irrigated with tannery wastewater. S. oleracea was treated without Fe and Zn-lys (0 mg/L Zn-lys and 0 mg/L Fe-lys) and also treated with various combinations of (interactive application) Fe and Zn-lys (10 mg/L Zn-lys and 5 mg/L Fe-lys), when cultivated at different levels [0 (control) 33, 66 and 100%) of tannery wastewater in the soil having a toxic level of Cr in it. According to the results, we have found that, high concentration of Cr in the soil significantly (P < 0.05) reduced plant height, fresh biomass of roots and leaves, dry biomass of roots and leaves, root length, number of leaves, leaf area, total chlorophyll contents, carotenoid contents, transpiration rate (E), stomatal conductance (gs), net photosynthesis (PN), and water use efficiency (WUE) and the contents of Zn and Fe in the plant organs without foliar application of Zn and Fe-lys. Moreover, phytotoxicity of Cr increased malondialdehyde (MDA) contents in the plant organs (roots and leaves), which induced oxidative damage in S. oleracea manifested by the contents of hydrogen peroxide (H2O2) and membrane leakage. The negative effects of Cr toxicity could be overturned by Zn and Fe-lys application, which significantly (P < 0.05) increase plant growth, biomass, chlorophyll content, and gaseous exchange attributes by reducing oxidative stress (H2O2, MDA, EL) and increasing the activities of various antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD) catalase (CAT) and ascorbate peroxidase (APX). Furthermore, the supplementation of Zn and Fe-lys increased the contents of essential nutrients (Fe and Zn) and decreased the content of Cr in all plant parts compared to the plants cultivated in tannery wastewater without application of Fe-lys. Taken together, foliar supplementation of Zn and Fe-lys alleviates Cr toxicity in S. oleracea by increased morpho-physiological attributes of the plants, decreased Cr contents and increased micronutrients uptake by the soil, and can be an effective in heavy metal toxicity remedial approach for other crops.Graphic abstract  相似文献   
775.
Zygotic embryos from ten spring wheat (Triticum aestivum L.) genotypes were tested for embryogenic callus induction in the presence or absence of externally supplied (±)-abscisic acid (ABA) and two of its analogs, methyl abscisate and methyl epoxy-beta-ionylideneacetate. (±)-ABA and its analogs suppressed precocious germination of cultured late-stage embryos and promoted embryogenic callus induction. A significantly greater number of plants was regenerated from calli induced in the presence of ABA and ABA analogs. Early-stage embryos when cultured in the presence of (±)-ABA showed a negative response. Possible roles of ABA with respect to the expression of somatic embryogenesis are discussed.Dedicated to Dr. Friedrich Constabel on the occasion of his 60th birthday  相似文献   
776.
Sheep liver cytosol (105,000 X g supernatant) yields two major peaks of protein kinase by using DEAE-Trisacryl M as an ion-exchange resin at pH 7.0. Peak I (Type-I), corresponding to 30-50% of the total activity, is not retained by the column at a starting ionic strength of ca. 0.06 M, while Peak-II (Type-II) is eluting at 0.17 M ionic strength. Both peaks are found to be dependent on cAMP and are active on histone (ATP: Protein phosphotransferase, EC 2.7.1.37). Kms apparents for histone and ATP are 1.5 +/- 0.5 mg/ml and 16 +/- 4 microM, respectively, for PrK-I while that of PrK-II are 1.8 mg/ml and 28.6 microM, respectively. Both enzymes are found to be stable for two weeks at 4 degrees C. Molecular weight determination of crude extract (105,000 X g supernatant) show three peaks corresponding to the molecular weights of 251,000; 131,800 and 43,600.  相似文献   
777.
778.

The scientific interest in developing new complexes as inhibitors of bacterial biofilm related infections is constantly rising. The present work describes the chemical synthesis, structural and biological scrutiny of a triazole Schiff base ligand and its corresponding complexes. Triazole Schiff base, (2-methoxy-4-[(1H-1,2,4-triazol-3-ylimino)methyl]phenol) was synthesized from the condensation reaction of 3-amino-1,2,4-triazole and 4-hydroxy-3-methoxybenzaldehyde in an equimolar ratio. The triazole ligand (H2L) was characterized by physical (solubility, color, melting point), spectroscopic [UV–visible (UV–Vis), Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (1H-NMR) and mass spectra (MS)] and micro analysis to evaluate their elemental composition. The bidentate ligand was complexed with transition metal [VO(IV), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II)] in 1:2 molar ratio. The complexes were characterized by physical (color, solubility, decomposition temperature, conductance and magnetic moment), FT-IR, UV–Vis and elemental analysis. Thermal stability and fluorescence properties of the compounds were also determined. Density functional theory based theoretical calculations were accomplished to gain more insight into spectroscopic properties. The frontier molecular orbital analysis revealed that the ligand was less reactive with reduced electron donating capability and more kinetic stability than complexes. The as-synthesized compounds were scrutinized for anti-bacterial and anti-fungal activity against selected strains. Cobalt complex exhibited highest antibacterial activity against Escherichia coli and nickel complex has shown highest antifungal activity against Aspergillus niger. All the compounds also showed good antioxidant activity. The theoretical results reflect consistency with the experimental findings signifying that such compounds could be the promising chemical scaffolds in the near future against microbial infectious.

Graphic abstract
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号