首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   12篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2018年   3篇
  2017年   1篇
  2016年   3篇
  2015年   9篇
  2014年   8篇
  2013年   9篇
  2012年   12篇
  2011年   11篇
  2010年   7篇
  2009年   7篇
  2008年   14篇
  2007年   11篇
  2006年   15篇
  2005年   17篇
  2004年   17篇
  2003年   8篇
  2002年   8篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   4篇
  1997年   1篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1991年   3篇
  1989年   1篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1980年   1篇
  1978年   1篇
  1977年   2篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1968年   1篇
排序方式: 共有206条查询结果,搜索用时 16 毫秒
161.
AtRad52 homologs are involved in DNA recombination and repair, but their precise functions in different homologous recombination (HR) pathways or in gene‐targeting have not been analyzed. In order to facilitate our analyses, we generated an AtRad52‐1A variant that had a stronger nuclear localization than the native gene thanks to the removal of the transit peptide for mitochondrial localization and to the addition of a nuclear localization signal. Over‐expression of this variant increased HR in the nucleus, compared with the native AtRad52‐1A: it increased intra‐chromosomal recombination and synthesis‐dependent strand‐annealing HR repair rates; but conversely, it repressed the single‐strand annealing pathway. The effect of AtRad52‐1A over‐expression on gene‐targeting was tested with and without the expression of small RNAs generated from an RNAi construct containing homology to the target and donor sequences. True gene‐targeting events at the Arabidopsis Cruciferin locus were obtained only when combining AtRad52‐1A over‐expression and target/donor‐specific RNAi. This suggests that sequence‐specific small RNAs might be involved in AtRad52‐1A‐mediated HR.  相似文献   
162.
When cells are induced to undergo apoptosis in the presence of general caspase inhibitors and then returned to their normal growth environment, there follows an extended period of life during which the entire cohort of mitochondria (including mitochondrial DNA) disappears from the cells. This phenomenon is widespread; it occurs in NGF-deprived sympathetic neurons, in NGF-maintained neurons treated with cytosine arabinoside, and in diverse cell lines treated with staurosporine, including HeLa, CHO, 3T3 and Rat 1 cells. Mitochondrial removal is highly selective since the structure of all other organelles remains unperturbed. Since Bcl2 overexpression blocks the removal of mitochondria without preventing death-inducing signals, it appears that the mitochondria are responsible for initiating their own demise. Degradation of mitochondria is not in itself a rare event. It occurs in large part by autophagy during normal cell house-keeping, during ecdysis in insects, as well as after induction of apoptosis. However, the complete and selective removal of an entire cohort of mitochondria in otherwise living mammalian cells has not been described previously. These findings raise several questions. What are the mechanisms which remove mitochondria in such a 'clean' fashion? What are the signals that target mitochondria for such selective degradation? How are cells that have lost their mitochondria different from rho0 cells (which retain mitochondria but lack mitochondrial DNA, and cannot carry out oxidative phosphorylation)? Are the cells which have lost mitochondria absolutely committed to die or might they be repaired by mitochondrial therapy? The answers will be especially relevant when considering treatment of diseases affecting long-lived and non-renewable organs such as the nervous system.  相似文献   
163.
Mutations in SLC25A4 encoding the mitochondrial ADP/ATP carrier AAC1 are well-recognized causes of mitochondrial disease. Several heterozygous SLC25A4 mutations cause adult-onset autosomal-dominant progressive external ophthalmoplegia associated with multiple mitochondrial DNA deletions, whereas recessive SLC25A4 mutations cause childhood-onset mitochondrial myopathy and cardiomyopathy. Here, we describe the identification by whole-exome sequencing of seven probands harboring dominant, de novo SLC25A4 mutations. All affected individuals presented at birth, were ventilator dependent and, where tested, revealed severe combined mitochondrial respiratory chain deficiencies associated with a marked loss of mitochondrial DNA copy number in skeletal muscle. Strikingly, an identical c.239G>A (p.Arg80His) mutation was present in four of the seven subjects, and the other three case subjects harbored the same c.703C>G (p.Arg235Gly) mutation. Analysis of skeletal muscle revealed a marked decrease of AAC1 protein levels and loss of respiratory chain complexes containing mitochondrial DNA-encoded subunits. We show that both recombinant AAC1 mutant proteins are severely impaired in ADP/ATP transport, affecting most likely the substrate binding and mechanics of the carrier, respectively. This highly reduced capacity for transport probably affects mitochondrial DNA maintenance and in turn respiration, causing a severe energy crisis. The confirmation of the pathogenicity of these de novo SLC25A4 mutations highlights a third distinct clinical phenotype associated with mutation of this gene and demonstrates that early-onset mitochondrial disease can be caused by recurrent de novo mutations, which has significant implications for the application and analysis of whole-exome sequencing data in mitochondrial disease.  相似文献   
164.
The intracellular Ca(2+)-dependent protease calpain and the specific calpain endogenous inhibitor calpastatin are widely distributed, with the calpastatin/calpain ratio varying among tissues and species. Increased Ca(2+) and calpain activation have been implicated in Alzheimer's disease (AD), with scant data available on calpastatin/calpain ratio in AD. Information is lacking on calpain activation and calpastatin levels in transgenic mice that exhibit AD-like pathology. We studied calpain and calpastatin in Tg2576 mice and in their wild type littermates (control mice). We found that in control mice calpastatin level varies among brain regions; it is significantly higher in the cerebellum than in the hippocampus, frontal and temporal cortex, whereas calpain levels are similar in all these regions. In the Tg2576 mice, calpain is activated, calpastatin is diminished, and calpain-dependent proteolysis is observed in brain regions affected in AD and in transgenic mice (especially hippocampus). In contrast, no differences are observed between the Tg2576 and the control mice in the cerebellum, which does not exhibit AD-like pathology. The results are consistent with the notion that a high level of calpastatin in the cerebellum renders the calpain in this brain region less liable to be activated; in the other brain parts, in which calpastatin is low, calpain is more easily activated in the presence of increased Ca(2+), and in turn the activated calpain leads to further diminution in calpastatin (a known calpain substrate). The results indicate that calpastatin is an important factor in the regulation of calpain-induced protein degradation in the brains of the affected mice, and imply a role for calpastatin in attenuating AD pathology. Promoting calpastatin expression may be used to ameliorate some manifestations of AD.  相似文献   
165.
Expression of GFP-LC3 is now in widespread use to visualize autophagy in cultured cells. Recently, Kuma et al. (Autophagy 2007; 3:323-8) highlighted some complications using GFP-LC3, demonstrating that punctate dots containing GFP-LC3 do not always represent autophagic structures. We report here that GFP-LC3 can also rapidly aggregate into autophagosome look-alike structures when cells are permeabilized with saponin before cell fixation. Treatment with saponin reduced diffuse cytosolic and nuclear GFP-LC3 but caused an increase in the number and intensity of fluorescent puncta per cell regardless of whether the cells were induced to undergo autophagy. Saponin also induced GFP-LC3 puncta in Atg5(-/-) MEF transfected with GFP-LC3, where no LC3-II is produced, demonstrating that the puncta are autophagosome-independent. The increase in GFP-LC3 puncta was not matched by an increase in endogenous LC3-II or GFP-LC3-II detected by immunoblotting when protein samples were normalized to cell number. A qualitatively similar effect was observed when cells were treated with other detergents commonly used for membrane permeabilization, such as CHAPS, Triton X-100 or digitonin. We also noted that tubulin could not be used to normalize for protein loading on blots after applying saponin as it was selectively extracted from untreated cells but not from cells treated with vinblastine. When using mild detergents to remove background fluorescence, we recommend using a membrane-associated protein such as ATP synthase beta for normalization. Thus, detergents used prior to fixation may precipitate GFP-LC3 aggregation into structures that appear autophagosomal and so should be used with caution.  相似文献   
166.
HLA-A2-restricted CTL responses to immunodominant HIV-1 epitopes do not appear to be very effective in the control of viral replication in vivo. In this study, we studied human CD8+ T cell responses to the subdominant HLA-A2-restricted epitope TV9 (Gag p24(19-27), TLNAWVKVV) to explore the possibility of increasing its immune recognition. We confirmed in a cohort of 313 patients, infected by clade B or clade C viruses, that TV9 is rarely recognized. Of interest, the functional sensitivity of the TV9 response can be relatively high. The potential T cell repertoires for TV9 and the characteristics of constituent clonotypes were assessed by ex vivo priming of circulating CD8+ T cells from healthy seronegative donors. TV9-specific CTLs capable of suppressing viral replication in vitro were readily generated, suggesting that the cognate T cell repertoire is not limiting. However, these cultures contained multiple discrete populations with a range of binding avidities for the TV9 tetramer and correspondingly distinct functional dependencies on the CD8 coreceptor. The lack of dominant clonotypes was not affected by the stage of maturation of the priming dendritic cells. Cultures primed by dendritic cells transduced to present endogenous TV9 were also incapable of clonal maturation. Thus, a diffuse TCR repertoire appeared to be an intrinsic characteristic of TV9-specific responses. These data indicate that subdominance is not a function of poor immunogenicity, cognate TCR repertoire availability, or the potential avidity properties thereof, but rather suggest that useful responses to this epitope are suppressed by competing CD8+ T cell populations during HIV-1 infection.  相似文献   
167.
168.
The binding of Streptococcus pyogenes to fibronectin (FN) enables the adherence of this pathogen to target epithelial cells, which is the first necessary step for initiation of infection. Binding is mediated by a bacterial surface protein termed protein F. Here we provide the complete structure of protein F and identify two domains responsible for binding to fibronectin. The first domain is located towards the C-terminal end of the molecule and is composed of five repeats of 37 amino acids that are completely repeated four times and a fifth time partially. The second domain is adjacent to the first domain and is located on the /V-terminal side of it. It is composed of a single stretch of 43 amino acids. Protein F expressed in Escherichia coli completely blocked the binding of fibronectin to S. pyogenes. However, mutant proteins that contained only one or the other of the two domains were only capable of partial blockage of binding. Complete blockage of binding of fibronectin could be achieved when a protein extract containing the N-terminal domain was mixed in a binding reaction with a protein extract containing the C-terminal domain. Similarly, a purified recombinant protein containing the two domains only, blocked the binding completely. In contrast, a purified recombinant protein containing just the C-terminal domain, blocked the binding partially. A clone exclusively expressing the C-terminal domain, completely blocked the binding of the 30 kDa N-terminal fragment of fibronectin to S. pyogenes, whereas a clone expressing the N-terminal domain failed to block the binding of this FN fragment. Thus, the two FN-binding domains of protein F are necessary for maximal bacterial binding and act in concert to enhance the binding to fibronectin. The possibility that the two domains bind to two different regions on the fibronectin molecule is discussed.  相似文献   
169.
Interactions between the cytoskeleton and cell adhesion molecules are presumed responsible for neurite extension. We have examined the role of microfilaments in neurite outgrowth on the cell adhesion molecules L1, P84, N-CAM, and on laminin. Cerebellar neurons growing on each substrate exhibited differing growth cone morphologies and rates of neurite extension. Growth of neurites in the presence of cytochalasin B (CB) was not inhibited on substrates of L1 or P84 but was markedly inhibited on N-CAM. Neurons on laminin were initially unable to extend neurites in the presence of CB but recovered this ability within 9 h. These studies suggest that neurite outgrowth mediated by different cell adhesion molecules proceeds via involvement of distinct cytoskeletal interactions. © 1993 John Wiley & Sons, Inc.  相似文献   
170.
In embryonic stem (ES) cells, bivalent chromatin domains with overlapping repressive (H3 lysine 27 tri-methylation) and activating (H3 lysine 4 tri-methylation) histone modifications mark the promoters of more than 2,000 genes. To gain insight into the structure and function of bivalent domains, we mapped key histone modifications and subunits of Polycomb-repressive complexes 1 and 2 (PRC1 and PRC2) genomewide in human and mouse ES cells by chromatin immunoprecipitation, followed by ultra high-throughput sequencing. We find that bivalent domains can be segregated into two classes -- the first occupied by both PRC2 and PRC1 (PRC1-positive) and the second specifically bound by PRC2 (PRC2-only). PRC1-positive bivalent domains appear functionally distinct as they more efficiently retain lysine 27 tri-methylation upon differentiation, show stringent conservation of chromatin state, and associate with an overwhelming number of developmental regulator gene promoters. We also used computational genomics to search for sequence determinants of Polycomb binding. This analysis revealed that the genomewide locations of PRC2 and PRC1 can be largely predicted from the locations, sizes, and underlying motif contents of CpG islands. We propose that large CpG islands depleted of activating motifs confer epigenetic memory by recruiting the full repertoire of Polycomb complexes in pluripotent cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号