首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2556篇
  免费   202篇
  2758篇
  2023年   13篇
  2022年   41篇
  2021年   76篇
  2020年   38篇
  2019年   52篇
  2018年   55篇
  2017年   51篇
  2016年   63篇
  2015年   127篇
  2014年   149篇
  2013年   185篇
  2012年   222篇
  2011年   258篇
  2010年   147篇
  2009年   134篇
  2008年   130篇
  2007年   142篇
  2006年   95篇
  2005年   110篇
  2004年   108篇
  2003年   83篇
  2002年   83篇
  2001年   19篇
  2000年   11篇
  1999年   23篇
  1998年   28篇
  1997年   10篇
  1996年   14篇
  1995年   22篇
  1994年   11篇
  1993年   12篇
  1992年   14篇
  1991年   13篇
  1989年   7篇
  1988年   7篇
  1986年   5篇
  1985年   8篇
  1984年   12篇
  1983年   14篇
  1982年   10篇
  1981年   11篇
  1980年   6篇
  1979年   11篇
  1978年   11篇
  1975年   9篇
  1974年   9篇
  1973年   5篇
  1971年   6篇
  1970年   7篇
  1965年   5篇
排序方式: 共有2758条查询结果,搜索用时 15 毫秒
941.
Abstract Microbes produce many molecules that are important for their growth and development, and the exploitation of these secretions by nonproducers has recently become an important paradigm in microbial social evolution. Although the production of these public-goods molecules has been studied intensely, little is known of how the benefits accrued and the costs incurred depend on the quantity of public-goods molecules produced. We focus here on the relationship between the shape of the benefit curve and cellular density, using a model assuming three types of benefit functions: diminishing, accelerating, and sigmoidal (accelerating and then diminishing). We classify the latter two as being synergistic and argue that sigmoidal curves are common in microbial systems. Synergistic benefit curves interact with group sizes to give very different expected evolutionary dynamics. In particular, we show that whether and to what extent microbes evolve to produce public goods depends strongly on group size. We show that synergy can create an "evolutionary trap" that can stymie the establishment and maintenance of cooperation. By allowing density-dependent regulation of production (quorum sensing), we show how this trap may be avoided. We discuss the implications of our results on experimental design.  相似文献   
942.
In contracting muscle, individual myosin molecules function as part of a large ensemble, hydrolyzing ATP to power the relative sliding of actin filaments. The technological advances that have enabled direct observation and manipulation of single molecules, including recent experiments that have explored myosin's force-dependent properties, provide detailed insight into the kinetics of myosin's mechanochemical interaction with actin. However, it has been difficult to reconcile these single-molecule observations with the behavior of myosin in an ensemble. Here, using a combination of simulations and theory, we show that the kinetic mechanism derived from single-molecule experiments describes ensemble behavior; but the connection between single molecule and ensemble is complex. In particular, even in the absence of external force, internal forces generated between myosin molecules in a large ensemble accelerate ADP release and increase how far actin moves during a single myosin attachment. These myosin-induced changes in strong binding lifetime and attachment distance cause measurable properties, such as actin speed in the motility assay, to vary depending on the number of myosin molecules interacting with an actin filament. This ensemble-size effect challenges the simple detachment limited model of motility, because even when motility speed is limited by ADP release, increasing attachment rate can increase motility speed.  相似文献   
943.
Geographic information systems (GIS) software is typically used for analyzing geographically distributed data, allowing users to annotate points or areas on a map and attach data for spatial analyses. While traditional GIS-based research involves geo-referenced data (points tied to geographic locations), the use of this technology has other constructive applications for physical anthropologists. The use of GIS software for the study of bone histology offers a novel opportunity to analyze the distribution of bone nano- and microstructures, relative to macrostructure and in comparison to other variables of interest, such as biomechanical loading history. This approach allows for the examination of characteristics of single histological features while considering their role at the macroscopic level. Such research has immediate promise in examining the load history of bone by surveying the functional relationship between collagen fiber orientation (CFO) and strain mode. The diversity of GIS applications that may be utilized in bone histology research is just beginning to be explored. The goal of this study is to introduce a reliable methodology for such investigation and our objective is to quantify the heterogeneity of bone microstructure over an entire cross-section of bone using ArcGIS v 9.3 (ESRI). This was accomplished by identifying the distribution of remodeling units in a human metatarsal relative to bending axes. One biomechanical hypothesis suggests that CFO, manifested by patterns of birefringence, is indicative of mode of strain during formation. This study demonstrates that GIS can be used to investigate, describe, and compare such patterns through histological mapping.  相似文献   
944.
Photosystem I (PS I) has two nearly identical branches of electron-transfer co-factors. Based on point mutation studies, there is general agreement that both branches are active at ambient temperature but that the majority of electron-transfer events occur in the A-branch. At low temperature, reversible electron transfer between P(700) and A(1A) occurs in the A-branch. However, it has been postulated that irreversible electron transfer from P(700) through A(1B) to the terminal iron-sulfur clusters F(A) and F(B) occurs via the B-branch. Thus, to study the directionality of electron transfer at low temperature, electron transfer to the iron-sulfur clusters must be blocked. Because the geometries of the donor-acceptor radical pairs formed by electron transfer in the A- and B-branch differ, they have different spin-polarized EPR spectra and echo-modulation decay curves. Hence, time-resolved, multiple-frequency EPR spectroscopy, both in the direct-detection and pulse mode, can be used to probe the use of the two branches if electron transfer to the iron-sulfur clusters is blocked. Here, we use the PS I variant from the menB deletion mutant strain of Synechocyctis sp. PCC 6803, which is unable to synthesize phylloquinone, to incorporate 2,3-dichloro-1,4-naphthoquinone (Cl(2)NQ) into the A(1A) and A(1B) binding sites. The reduction midpoint potential of Cl(2)NQ is approximately 400 mV more positive than that of phylloquinone and is unable to transfer electrons to the iron-sulfur clusters. In contrast to previous studies, in which the iron-sulfur clusters were chemically reduced and/or point mutations were used to prevent electron transfer past the quinones, we find no evidence for radical-pair formation in the B-branch. The implications of this result for the directionality of electron transfer in PS I are discussed.  相似文献   
945.
Buffering to achieve pH control is crucial for successful trichloroethene (TCE) anaerobic bioremediation. Bicarbonate (HCO3−) is the natural buffer in groundwater and the buffer of choice in the laboratory and at contaminated sites undergoing biological treatment with organohalide respiring microorganisms. However, HCO3− also serves as the electron acceptor for hydrogenotrophic methanogens and hydrogenotrophic homoacetogens, two microbial groups competing with organohalide respirers for hydrogen (H2). We studied the effect of HCO3− as a buffering agent and the effect of HCO3−-consuming reactions in a range of concentrations (2.5-30 mM) with an initial pH of 7.5 in H2-fed TCE reductively dechlorinating communities containing Dehalococcoides, hydrogenotrophic methanogens, and hydrogenotrophic homoacetogens. Rate differences in TCE dechlorination were observed as a result of added varying HCO3− concentrations due to H2-fed electrons channeled towards methanogenesis and homoacetogenesis and pH increases (up to 8.7) from biological HCO3− consumption. Significantly faster dechlorination rates were noted at all HCO3− concentrations tested when the pH buffering was improved by providing 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) as an additional buffer. Electron balances and quantitative PCR revealed that methanogenesis was the main electron sink when the initial HCO3− concentrations were 2.5 and 5 mM, while homoacetogenesis was the dominant process and sink when 10 and 30 mM HCO3− were provided initially. Our study reveals that HCO3− is an important variable for bioremediation of chloroethenes as it has a prominent role as an electron acceptor for methanogenesis and homoacetogenesis. It also illustrates the changes in rates and extent of reductive dechlorination resulting from the combined effect of electron donor competition stimulated by HCO3− and the changes in pH exerted by methanogens and homoacetogens.  相似文献   
946.
The IR3535 derivative (LJH158), in which the ethyl ester of IR3535 was converted to methyl ester, was synthesized and studied as a new mosquito repellent. The repellent efficacy of LJH158 was compared with that of DEET against Aedes albopictus, Culex pipiens pallens and Aedes togoi. Also, the aromatic repellent tests were conducted with mixtures of repellents and the essential oils of cinnamon, which were obtained by supercritical fluid extraction. In addition, the safety issues of LJH158 were monitored using single oral dose safety methods and eye irritation, and skin irritation tests. The results of repellent efficacy in both biting and aromatic tests and safety tests demonstrate that LJH158 has high potential to be used as a new repellent or in combination with other repellents.  相似文献   
947.
Green synthesis of metallic nanoparticles has become a promising field of research in recent years. Syntheses of gold and silver nanoparticles by various chemical and physical methods as well as the biosynthetic approach mediated by numerous microorganisms have been actively researched. A more scalable and economic route to produce these metallic nanoparticles would be through the plant-mediated synthetic approach. Owing to the biodiversity of plant biomasses, the mechanism by which bioconstituents of plants have contributed to the synthetic process is yet to be fully understood. Nevertheless, the feasibility of controlling the shape and size of nanoparticles by varying the reaction conditions has been demonstrated in many studies. This paper provides an overview of the plant-mediated syntheses of gold and silver nanoparticles, possible compounds and mechanisms that might be responsible for the bioreduction process as well as the potential applications of biosynthesized nanoparticles in different fields. The challenges and limitations of this plant-mediated biosynthetic approach are also discussed.  相似文献   
948.
We have previously shown that trophic factor supplementation (TFS) of University of Wisconsin (UW) solution reduced early apoptotic changes in vascular endothelial cells. Here, we examine the effect of TFS on cell signaling pathways related to cell growth, differentiation, and apoptosis after cold ischemic storage. In this study, the effect of TFS on the phosphorylation of signaling molecules ERK (extracellular regulated-signaling kinase) 1/2 and p38 MAPK (mitogen activated protein kinases) and of HO-1 (hemeoxygenase-1), relative to changes seen in unmodified UW solution, were determined by Western blot in cells stored under cold ischemic conditions. Primary cultures of canine kidney proximal tubule cells (CKPTC) and human umbilical vein endothelial cells (HUVEC) were used in this study. There was a significant decrease, relative to UW solution, after 1 min rewarming in ERK 1 and 2 activity in CKPTCs. For p38 MAPK, a significant decrease after 5 min rewarming was seen in CKPTC (p < 0.05) while significant reductions relative to UW solution were seen in HUVECs after both 1 and 5 min rewarming (p < 0.05). Phosphorylated HO-1 was also decreased by 43% and 50% in HUVECs, relative to UW solution, after 1 and 5 min rewarming (p < 0.05 at each time point). Collectively, TFS not only limits ERK 1/2 and p38 MAPK activity induced by cold ischemic injury and subsequent rewarming, but also substantially restricted increases in HO-1 phosphorylation.  相似文献   
949.
A previous study of nitrite reduction by Paracoccus pantotrophus cytochrome cd1 at pH 7.0 identified early reaction intermediates. The c-heme rapidly oxidised and nitrite was reduced to NO at the d1-heme. A slower equilibration of electrons followed, forming a stable complex assigned as 55% cFe(III)d1Fe(II)-NO and 45% cFe(II)d1Fe(II)-NO+. No catalytically competent NO release was observed. Here we show that at pH 6.0, a significant proportion of the enzyme undergoes turnover and releases NO. An early intermediate, which was previously overlooked, is also identified; enzyme immediately following product release is a candidate. However, even at pH 6.0 a considerable fraction of the enzyme remains bound to NO so another component is required for full product release. The kinetically stable product formed at the end of the reaction differs significantly at pH 6.0 and 7.0, as does its rate of formation; thus the reaction is critically dependent on pH.  相似文献   
950.
Monoamine oxidase from Aspergillus niger (MAO-N) is a flavoenzyme that catalyses the oxidative deamination of primary amines. MAO-N has been used as the starting model for a series of directed evolution experiments, resulting in mutants of improved activity and broader substrate specificity, suitable for application in the preparative deracemisation of primary, secondary and tertiary amines when used as part of a chemoenzymatic oxidation-reduction cycle. The structures of a three-point mutant (Asn336Ser/Met348Lys/Ile246Met or MAO-N-D3) and a five-point mutant (Asn336Ser/Met348Lys/Ile246Met/Thr384Asn/Asp385Ser or MAO-N-D5) have been obtained using a multiple-wavelength anomalous diffraction experiment on a selenomethionine derivative of the truncated MAO-N-D5 enzyme. MAO-N exists as a homotetramer with a large channel at its centre and shares some structural features with human MAO B (MAO-B). A hydrophobic cavity extends from the protein surface to the active site, where a non-covalently bound flavin adenine dinucleotide (FAD) sits at the base of an ‘aromatic cage,’ the sides of which are formed by Trp430 and Phe466. A molecule of l-proline was observed near the FAD, and this ligand superimposed well with isatin, a reversible inhibitor of MAO-B, when the structures of MAO-N proline and MAO-B-isatin were overlaid. Of the mutations that confer the ability to catalyse the oxidation of secondary amines in MAO-N-D3, Asn336Ser reduces steric bulk behind Trp430 of the aromatic cage and Ile246Met confers greater flexibility within the substrate binding site. The two additional mutations, Thr384Asn and Asp385Ser, that occur in the MAO-N-D5 variant, which is able to oxidise tertiary amines, appear to influence the active-site environment remotely through changes in tertiary structure that perturb the side chain of Phe382, again altering the steric and electronic character of the active site near FAD. The possible implications of the change in steric and electronic environment caused by relevant mutations are discussed with respect to the improved catalytic efficiency of the MAO-N variants described in the literature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号