首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   3篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   1篇
  2012年   4篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   6篇
  2007年   3篇
  2005年   3篇
  2003年   1篇
  2002年   1篇
  2001年   4篇
  2000年   1篇
  1999年   3篇
  1998年   3篇
  1996年   1篇
  1995年   3篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
  1982年   1篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
11.
We have constructed and characterized transgenic Drosophila lines with modified Na+,K+-ATPase activity. Using a temperature dependent promoter from the hsp70 gene to drive expression of wild-type α subunit cDNA, we can conditionally rescue bang-sensitive paralysis and ouabain sensitivity of a Drosophila Na+,K+-ATPase α subunit hypomorphic mutant, 2206. In contrast, a mutant α subunit (αD369N) leads to increased bang-sensitive paralysis and ouabain sensitivity. We can also generate temperature dependent phenotypes in wild-type Drosophila using the same hsp70 controlled α transgenes. Ouabain sensitivity was as expected, however, both bang sensitive paralysis or locomotor phenotypes became more severe regardless of the type of α subunit transgene. Using the Gal4-UAS system we have limited expression of α transgenes to cell types that normally express a particular Drosophila Na+,K+-ATPase β (Nervana) subunit isoform (Nrv1 or 2). The Nrv1-Gal4 driver results in lethality while the Nrv2-Gal4 driver shows reduced viability, locomotor function and uncontrolled wing beating. These transgenic lines will be useful for disrupting function in a broad range of cell types.  相似文献   
12.
13.
14.
Choline acetyltransferease (ChAT) is the enzyme catalyzing the biosynthesis of acetylcholine and is considered to be a phenotypically specific marker for cholinergic neurons. We have examined the distribution of ChAT-expressing neurons in the larval nervous system of Drosophila melanogaster by three different but complementary techniques: in situ hybridization with a cRNA probe to ChAT messenger RNA, immunocytochemistry using a monoclonal anti-ChAT antibody, and X-gal staining of transformed animals carrying a reporter gene composed of 7.4 kb of 5 flanking DNA from the ChAT gene fused to a lacZ reporter gene. All three techniques demonstrated ChAT-expressing neurons in the larval visual system. In embryos, the photoreceptor organ (Bolwig's organ) exhibited strong cRNA hybridization signals. The optic lobe of late third-instar larvae displayed ChAT immunoreactivity in Bolwig's nerve and a neuron close to the insertion site of the optic stalk. This neuron's axon ran in parallel with Bolwig's nerve to the larval optic neuropil. This neuron is likely to be a first-order interneuron of the larval visual system. Expression of the lacZ reporter gene was also detected in Bolwig's organ and the neuron stained by anti-ChAT antibody. Our observations indicate that acetylcholine may be a neurotransmitter in the larval photoreceptor cells as well as in a first-order interneuron in the larval visual system of Drosophila melanogaster.This work was supported by a grant from the National Institute of Neurological Disorders and Stroke.  相似文献   
15.
1. The subcellular distribution of binding sites for 125I-labeled alpha-bungarotoxin was studied in rat cerebral cortex. Primary fractions showing higher specific activity than homogenate were P2 (crude mitochondria and nerve endings) and P3-P2 was subfractionated on a Ficoll gradient with the P2B (nerve ending) subfraction exhibiting the greatest recovery (65%) and enrichment of toxin binding. Toxin binding showed a distribution similar to that of acetylcholinesterase, choline acetyltransferase, and sodium and potassium ion-activated ATPase. 2. P2B and P3 were subfractionated on five-step discontinuous sucrose gradients. The highest specific activity of toxin binding and acetylcholinesterase was associated with fractions of relatively low buoyant density, while choline acetyltransferase activity was associated with fractions of higher density. 3. Toxin binding, acetylcholinesterase, and choline acetyltransferase activities were relatively high in olfactory lobes, cerebral cortex, thalamic region, caudate nucleus, and brain stem; intermediate in hippocampus; low in cerebellum. 4. The relationship of toxin binding to the putative acetylcholine receptor in brain is discussed.  相似文献   
16.
Purified acetyl-CoA: choline O-acetyltransferase (EC 2.3.1.6) from Drosophila melanogaster has been shown to contain two major polypeptides of 67 and 54 K Daltons. However, all enzyme activity is found in a single molecular weight form of approx 67 K Daltons as determined by sucrose gradient sedimentation and molecular exclusion chromatography. The latter showed both the 67 and 54 K Dalton polypeptides on polyacrylamide gel electrophoresis in sodium lauryl sulfate (10% acrylamide). Analysis of purified choline acetyltransferase on polyacrylamide gel electrophoresis in sodium lauryl sulfate (15% acrylamide) revealed the presence of an additional polypeptide at 13 K Daltons. Tryptic-peptide maps of the 67, 54 and 13 K Dalton components showed all three to be structurally related. In addition to several common tryptic peptides, the 13 K Dalton polypeptide contained three tryptic-peptides that were also found in the 67 K Dalton polypeptide, but were absent from the 54 K Dalton polypeptide. This evidence suggests that native Drosophila choline acetyltransferase may exist in two forms, one a single polypeptide chain with a molecular weight of 67 K Daltons and the other consisting of two noncovalently bound polypeptide chains with molecular weights of 54 and 13 K Daltons. The latter form is the major one isolated and may be generated by limited proteolysis of the single chain 67 K Dalton form.  相似文献   
17.
18.
The Drosophila genome contains at least three loci for the Na,K-ATPase β-subunit; however, only the protein products of nrv1 and nrv2 have been characterized hitherto. Here, we provide evidence that nrv3 also encodes for a functional Na,K-ATPase β-subunit, as its protein product co-precipitates with the Na,K-ATPase α-subunit. Nrv3 expression in adult flies is restricted to the nervous system in which Nrv3 is enriched in selective types of sensory cells. Because Nrv3 expression is especially prominent in the compound eye, we have analyzed the subcellular and developmental distribution of Nrv3 within the visual cells and related this distribution to those of the α-subunit and of the β-subunits Nrv1 and Nrv2. Prospective visual cells express Nrv2 in the third larval instar stage and during the first half of pupal development. During the last third of pupal life, Nrv3 gradually replaces Nrv2 as the Na,K-ATPase β-subunit in the photoreceptor cells. Adult photoreceptors express Nrv3 as their major β-subunit; the visual cells R1–R6 co-express Nrv2 at a low level, whereas R7 and R8 co-express Nrv1. Notably, β-subunits do not co-distribute exactly with the α-subunit at some developmental stages, supporting the concept that the α-subunit and β-subunit can exist in the plasma membrane without being engaged in α/β heterodimers. The non-visual cells within the compound eye express almost exclusively Nrv2, which segregates together with the α-subunit to septate junctions throughout development.  相似文献   
19.
Abstract: We have previously purified and characterized a nervous system-specific glycoprotein antigen from adult Drosophila heads, designated Nervana [nerve antigen (NRV)] and identified two separate genes coding for three different proteins. All three proteins share homology with the β subunits of Na+,K+-ATPase from various other species. In this study we have isolated a new Drosophila Na+,K+-ATPase α subunit cDNA clone (PSα; GenBank accession no. AF044974) and demonstrate expression of functional Na+,K+-ATPase activity when PSα mRNA is coinjected into Xenopus oocytes along with any of the three different Nrv mRNAs. Western blotting, RNase protection assays, and immunocytochemical staining of adult fly sections indicate that NRV2 is expressed primarily in the nervous system. Staining is most intense in the brain and thoracic ganglia and is most likely associated with neuronal elements. NRV1 is more broadly expressed in muscle and excretory tissue and also shows diffuse distribution in the nervous system. Similar to other species, Drosophila expresses multiple isoforms of Na+,K+-ATPase subunits in a tissue- and cell type-specific pattern. It will now be possible to use the advantages of Drosophila molecular and classical genetics to investigate the phenotypic consequences of altering Na+,K+-ATPase expression in various cell and tissue types.  相似文献   
20.
Summary Choline acetyltransferase (ChAT, EC 2.3.1.6) catalyzes the production of the neurotransmitter acetylcholine, and is an essential factor for neurons to be cholinergic. We have analyzed regulation of the Drosophila ChAT gene during development by examining the -galactosidase expression pattern in transformed lines carrying different lengths of 5 flanking DNA fused to a lacZ reporter gene. The largest fragment tested, 7.4 kb, resulted in the most extensive expression pattern in embryonic and larval nervous system and likely reflects all the cis-regulatory elements necessary for ChAT expression. We also found that 5 flanking DNA located between 3.3 kb and 1.2 kb is essential for the reporter gene expression in most of the segmentally arranged embryonic sensory neurons as well as other distinct cells in the CNS. The existence of negative regulatory elements was suggested by the observation that differentiating photoreceptor cells in eye imaginal discs showed the reporter gene expression in several 1.2 kb and 3.3 kb transformants but not in 7.4 kb transformants. Furthermore, we have fused the 5 flanking DNA fragments to a wild type ChAT cDNA and used these constructs to transform Drosophila with a Cha mutant background. Surprisingly, even though different amounts of 5 flanking DNA resulted in different spatial expression patterns, all of the positively expressing cDNA transformed lines were rescued from lethality. Our results suggest that developmental expression of the ChAT gene is regulated both positively and negatively by the combined action of several elements located in the 7.4 kb upstream region, and that the more distal 5 flanking DNA is not necessary for embryonic survival and development to adult flies. Correspondence to: P.M. Salvaterra  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号