首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   9篇
  2021年   1篇
  2020年   2篇
  2018年   5篇
  2017年   5篇
  2016年   3篇
  2015年   3篇
  2014年   7篇
  2013年   8篇
  2012年   8篇
  2011年   7篇
  2010年   5篇
  2009年   5篇
  2008年   6篇
  2007年   3篇
  2006年   5篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   4篇
  1999年   2篇
  1998年   8篇
  1995年   1篇
  1994年   1篇
  1991年   2篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1977年   1篇
  1976年   1篇
  1972年   1篇
  1948年   1篇
  1936年   1篇
排序方式: 共有113条查询结果,搜索用时 156 毫秒
31.
32.
33.
Empirical data on the signals and processes that direct animal movement during dispersal in heterogeneous landscapes are scarce. Our understanding could benefit from utilising simulation approaches and searching for simple rules across species and landscapes. This study sought to identify general movement behaviours that optimise butterfly movements during hilltopping. This widespread dispersal‐like phenomenon in butterflies, where males and virgin females ascend to mountain summits for the purpose of mating, benefits from the uniqueness of knowing the purpose (mating) and the orientation signal (topography). We used an individual‐based simulation model to search for movement rules that can optimise mating success, mating time, and the success of mated females in subsequently finding habitat patches across differently structured landscapes. We found that a strong response to topography was optimal for males and virgin females to reach summits, but slight deviation from ‘perfect’, namely a certain level of randomness in response to topography, was inherently essential to avoid the risk of being trapped on local summits. The optimal response of mated females deviated only slightly from a random movement, indicating a potential weak response to topography which could be easily overlooked by field studies. Notably, the parameter values identified by the model as optimal corresponded with the observed behaviour of butterflies in the field. Finally, the optimal movement behaviours were affected by the lifespan of butterflies and the spatial distribution of host plant patches, but less so by landscape structure. We therefore suggest that modelling approaches that build on simple biological rules can facilitate the development and parameterisation of models for understanding and potentially predicting dispersal and connectivity in complex landscapes, also in circumstances where observed patterns seem complex and empirical data are scarce.  相似文献   
34.
Social niche construction (SNC) occurs when animals actively shape their social environments. Currently the fitness consequences of SNC are poorly understood, and no study has examined whether variation in SNC has a genetic basis. Here we report the first instance of genetic variation in SNC by showing that Drosophila male aggression shapes the social environment. We allowed flies of different genotypes to interact in complex arenas; we measured the number and sex of individuals in the groups that formed and counted instances of mating. Arenas containing more aggressive male genotypes formed groups with fewer males, demonstrating that aggressive male genotypes experienced different social environments than nonaggressive genotypes. Further, genotypes with highest mating success were those whose SNC behavior generated the social environment in which they were most adept at mating: genotypes who mate most often after winning aggressive encounters benefit from aggressive SNC, while genotypes who mate most often after losing achieve high mating rates by forgoing aggression. The presence of these alternative strategies-which were robust across eight population densities-revealed that selection on aggression and context-dependent mating was disruptive, consistent with the hypothesis that SNC can maintain genetic variation in multiple behaviors.  相似文献   
35.
Gene-environment correlation (rGE) occurs when an individual's genotype determines its choice of environment, generating a correlation between environment and genotype frequency. In particular, social rGE, caused by genetic variation in social environment choice, can critically determine both individual development and the course of social selection. Despite its foundational role in social evolution and developmental psychology theory, natural genetic variation in social environment choice has scarcely been examined empirically. Drosophila melanogaster provides an ideal system for investigating social rGE. Flies live socially in nature and have many opportunities to make social decisions; and natural, heterozygous genotypes may be replicated, enabling comparisons between genotypes across environments. Using this approach, I show that all aspects of social environment choice vary among natural genotypes, demonstrating pervasive social rGE. Surprisingly, genetic variation in group-size preference was density dependent, indicating that the behavioral and evolutionary consequences of rGE may depend on the context in which social decisions are made. These results provide the first detailed investigation of social rGE, and illustrate that that genetic variation may influence organismal performance by specifying the environment in which traits are expressed.  相似文献   
36.
Razgour O  Korine C  Saltz D 《Oecologia》2011,167(2):493-502
Bodies of water are a key foraging habitat for insectivorous bats. Since water is a scarce and limiting resource in arid environments, bodies of open water may have a structuring effect on desert bat communities, resulting in temporal or spatial partitioning of bat activity. Using acoustic monitoring, we studied the spatial and temporal activity patterns of insectivorous bats over desert ponds, and hypothesised that sympatric bat species partition the foraging space above ponds based on interspecific competitive interactions. We used indirect measures of competition (niche overlap and competition coefficients from the regression method) and tested for differences in pond habitat selection and peak activity time over ponds. We examined the effect of changes in the activity of bat species on their potential competitors. We found that interspecific competition affects bat community structure and activity patterns. Competing species partitioned their use of ponds spatially, whereby each species was associated with different pond size and hydroperiod (the number of months a pond holds water) categories, as well as temporally, whereby their activity peaked at different hours of the night. The drying out of temporary ponds increased temporal partitioning over permanent ponds. Differences in the activity of species over ponds in response to the presence or absence of their competitors lend further support to the role of interspecific competition in structuring desert bat communities. We suggest that habitat use and night activity pattern of insectivorous bats in arid environments reflect the trade-offs between selection of preferred pond type or activity time and constraints posed by competitive interactions.  相似文献   
37.
38.
39.
40.
We examined the effects of leaf herbivory by the dorcas gazelle, Gazella dorcas, on the compensatory growth of the geophyte Pancratium sickenbergeri (Amaryllidaceae) in the Negev desert, Israel. In three populations exposed to different levels of herbivory, we removed different amounts of photosynthetic leaf area from plants in five clipping treatments: 0, 25, 50%-dispersed over all leaves, 50%-entire area of half the leaves, 100%. The population with the lowest level of herbivory showed the lowest relative regrowth rate after clipping. In the population with a constantly high level of herbivory, plants in intermediate-clipping treatments overcompensated in leaf area after clipping. For all the populations, clipped plants produce more new leaves than unclipped plants. In the population with the highest level of herbivory, clipping treatments did not have a significant effect on the number of fruits per plant. In addition, we did not find a trade-off between investments in growth and reproduction in this population. Our results indicated that, in the desert lily, herbivores may select for plant mechanisms that compensate after damage as a tolerant strategy to maintain fitness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号