首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   13篇
  2021年   1篇
  2018年   3篇
  2015年   2篇
  2014年   3篇
  2013年   1篇
  2012年   6篇
  2011年   5篇
  2009年   1篇
  2008年   3篇
  2007年   7篇
  2006年   10篇
  2005年   4篇
  2004年   3篇
  2003年   7篇
  2002年   5篇
  2001年   5篇
  2000年   3篇
  1999年   5篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   4篇
  1992年   6篇
  1991年   10篇
  1990年   5篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1983年   2篇
  1981年   1篇
  1980年   1篇
  1970年   2篇
排序方式: 共有117条查询结果,搜索用时 935 毫秒
41.
A novel series of benzhydroxamate esters derived from their precursor anthranilic acids have been prepared and have been identified as potent MEK inhibitors. 2-(2-Chloro-4-iodo-phenylamino)-N-cyclopropylmethoxy-3,4-difluoro-benzamide, CI-1040, was the first MEK inhibitor to demonstrate in vivo activity in preclinical animal models and subsequently became the first MEK inhibitor to enter clinical trial. CI-1040 suffered however from poor exposure due to its poor solubility and rapid clearance, and as a result, development of the compound was terminated. Optimization of the diphenylamine core and modification of the hydroxamate side chain for cell potency, solubility, and exposure with oral delivery resulted in the discovery of the clinical candidate N-(2,3-dihydroxy-propoxy)-3,4-difluoro-2-(2-fluoro-4-iodo-phenylamino)-benzamide PD 0325901.  相似文献   
42.
Some of the actions of insulin may be mediated by the intracellular generation of an inositol phosphate glycan that modulates the activities of certain metabolic enzymes. The actions of this molecule were evaluated on glucose utilization in intact rat adipocytes. The inositol glycan led to the dose-dependent stimulation of glucose oxidation and lipogenesis. The extent of stimulation was similar to that observed for insulin. The stimulation of lipogenesis was seen only at high concentrations of glucose, suggesting regulation of processes distal to glucose uptake. The effects of the inositol glycan on intact adipocytes were specifically attenuated with inositol monophosphate in a dose dependent manner. These results further support a role for this substance as a second messenger for some of the actions of insulin, and indicate that the cellular uptake of the inositol glycan may occur by a specific transport system.  相似文献   
43.
Abstract: Activation of protein kinase C (PKC) regulates the processing of Alzheimer amyloid precursor protein (APP) into its soluble form (sAPP) and amyloid β-peptide (Aβ). However, little is known about the intermediate steps between PKC activation and modulation of APP metabolism. Using a specific inhibitor of mitogen-activated protein (MAP) kinase kinase activation (PD 98059), as well as a dominant negative mutant of MAP kinase kinase, we show in various cell lines that stimulation of PKC by phorbol ester rapidly induces sAPP secretion through a mechanism involving activation of the MAP kinase cascade. In PC12-M1 cells, activation of MAP kinase by nerve growth factor was associated with stimulation of sAPP release. Conversely, M1 muscarinic receptor stimulation, which is known to act in part through a PKC-independent pathway, increased sAPP secretion mainly through a MAP kinase-independent pathway. Aβ secretion and its regulation by PKC were not affected by PD 98059, supporting the concept of distinct secretory pathways for Aβ and sAPP formation.  相似文献   
44.
Tyrosine phosphorylation of proteins was examined in NIH3T3 cells transformed by an oncogenic form of the trk protein. Proteins of 148, 140, 70, and 55 kDa were phosphorylated on tyrosine residues in trk-transformed cells but not control NIH3T3 cells. The 70-kDa protein may represent the trk oncogene protein itself which was shown to be tyrosine-phosphorylated in vivo using trk-specific antiserum. Phospholipase C-gamma 1 (PLC-gamma 1) was also found to be constitutively tyrosine-phosphorylated in trk-transformed cells and the trk protein co-immunoprecipitated with PLC-gamma. The GTPase-activating protein of ras (GAP) and the 62-kDa GAP-associated protein were tyrosine-phosphorylated in trk-transformed cells, and a lesser amount of trk co-immunoprecipitated with GAP relative to with PLC-gamma. The trk oncogene product bound specifically to a bacterially expressed fusion protein containing the src homology domains of PLC-gamma. The data suggest a significant role for PLC-gamma in intracellular signaling by the trk oncogene.  相似文献   
45.
The cellular actions of nerve growth factor (NGF) involve regulation of protein phosphorylation. In PC-12 pheochromocytoma cells, exposure of [125I]NGF followed by crosslinking indicates that the ligand binds to two discreet receptors, the previously described 75 kd protein, as well as the trk proto-oncogene product pp140c-trk. Competition experiments reveal that of the two, pp 140c-trk binds to NGF with higher affinity. Following exposure to NGF, pp140c-trk undergoes a rapid autophosphorylation on tyrosine residues, and concomitantly phosphorylates and associates with phospholipase C gamma 1 (PLC gamma 1), through interaction with its src homology domains. The binding of NGF to pp140c-trk with high affinity, the NGF-dependent homology domains. The binding of NGF to pp140c-trk with high affinity, the NGF-dependent activation of its tyrosine kinase activity and the specific association with the effector molecule, PLC gamma 1, suggests that this is the biologically relevant signaling receptor for NGF.  相似文献   
46.
Despite significant advances in the past few years on the chemistry and biology of insulin and its receptor, the molecular events that couple the insulin-receptor interaction to the regulation of cellular metabolism remain uncertain. Progress in this area has been complicated by the pleiotropic nature of insulin's actions. These most likely involve a complex network of pathways resulting in the coordination of mechanistically distinct cellular effects. Since the well-recognized mechanisms of signal transduction (i.e., cyclic nucleotides, ion channels) appear not to be central to insulin action, investigators have searched for a novel second messenger system. A low-molecular-weight substance has been identified that mimics certain actions of insulin on metabolic enzymes. This substance has an inositol glycan structure, and is produced by the insulin-sensitive hydrolysis of a glycosyl-phosphatidylinositol in the plasma membrane. This hydrolysis reaction, which is catalyzed by a specific phospholipase C, also results in the production of a structurally distinct diacylglycerol that may selectively regulate one or more of the protein kinases C. The glycosyl-phosphatidylinositol precursor for the inositol glycan enzyme modulator is structurally analogous to the recently described glycosyl-phosphatidylinositol membrane protein anchor. Preliminary studies suggest that a subset of proteins anchored in this fashion might be released from cells by a similar insulin-sensitive, phospholipase-catalyzed reaction. Future efforts will focus on the precise role of the metabolism of glycosyl-phosphatidylinositols in insulin action.  相似文献   
47.
Incubation of a rat liver particulate fraction with physiological concentrations of insulin enhances the production of a small molecular weight substance which modulates adipocyte as well as liver mitochondrial pyruvate dehydrogenase. While low concentrations of insulin enhance production of this activity, levels of greater than 10?9M produce significantly less. Similarly, while increasing concentrations of mediator cause increased stimulation of pyruvate dehydrogenase activity, higher concentrations no longer exhibit this effect. The putative insulin mediator was partially purified on HPLC and Sephadex G-25 columns. Its molecular weight was about 1000–2000. These results indicate the presence of a chemical mediator of insulin action in liver similar to that observed in other insulin target tissues.  相似文献   
48.
The cellular actions of nerve growth factor (NGF) involve changes in protein phosphorylation, initiated by the binding and subsequent activation of its tyrosine kinase receptor, the trk protooncogene (pp140c-trk). Upon exposure to NGF, a 38-kDa tyrosine-phosphorylated protein (pp38) is identified in both PC-12 pheochromocytoma cells and NIH3T3 cells transfected with the full-length human pp140c-trk cDNA (3T3-c-trk) that is specifically coimmunoprecipitated with pp140c-trk or phosphatidylinositol-phospholipase C (PLC)-gamma 1. In both PC-12 and 3T3-c-trk cells, NGF rapidly stimulates the association of pp140c-trk and pp38 with a fusion protein containing the src homology (SH) domains of PLC gamma 1. This phosphorylation and subsequent association are specific for NGF, since epidermal growth factor, platelet-derived growth factor, and insulin do not stimulate the tyrosine phosphorylation of these proteins or their association with the PLC gamma 1 SH domains, although the receptors for these growth factors do undergo tyrosine phosphorylation and association with the PLC-gamma 1 fusion protein under these conditions. Furthermore, the NGF-dependent pp38-SH binding is specific for the SH2 domains of PLC-gamma 1, since the phosphoprotein does not bind to fusion proteins containing SH domains of ras GTPase-activating protein or the p85 subunit of phosphatidylinositol 3 kinase. Both amino- and carboxyl-terminal SH2 domains of PLC-gamma 1 are necessary for the association of pp38 with PLC-gamma 1, although each SH2 domain is sufficient for the association of pp140c-trk with PLC-gamma 1. In both PC-12 and 3T3-c-trk cells, the phosphorylation and association of pp38 with PLC gamma 1 is rapid, occurring maximally at 1 min and declining thereafter. Moreover, this effect of NGF is dose-dependent over a physiological concentration of the growth factor. The specificity and rapidity of pp38 phosphorylation and its association with PLC-gamma 1 suggest that it may be an important component in signal transduction for NGF.  相似文献   
49.
Insulin stimulation of adipocytes resulted in the recruitment of atypical PKC (PKCzeta/lambda) to plasma membrane lipid raft microdomains. This redistribution of PKCzeta/lambda was prevented by Clostridium difficile toxin B and by cholesterol depletion, but was unaffected by inhibition of phosphatidylinositol (PI) 3-kinase activity. Expression of the constitutively active GTP-bound form of TC10 (TC10Q/75L), but not the inactive GDP-bound mutant (TC10/T31N), targeted PKCzeta/lambda to the plasma membrane through an indirect association with the Par6-Par3 protein complex. In parallel, insulin stimulation as well as TC10/Q75L resulted in the activation loop phosphorylation of PKCzeta. Although PI 3-kinase activation also resulted in PKCzeta/lambda phosphorylation, it was not recruited to the plasma membrane. Furthermore, insulin-induced GSK-3beta phosphorylation was mediated by both PI 3-kinase-PKB and the TC10-Par6-atypical PKC signaling pathways. Together, these data demonstrate that PKCzeta/lambda can serve as a convergent downstream target for both the PI 3-kinase and TC10 signaling pathways, but only the TC10 pathway induces a spatially restricted targeting to the plasma membrane.  相似文献   
50.
TORC1, a conserved protein kinase, regulates cell growth in response to nutrients. Localization of mammalian TORC1 to lysosomes is essential for TORC1 activation. Phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), an endosomal signaling lipid, is implicated in insulin-dependent stimulation of TORC1 activity in adipocytes. This raises the question of whether PI(3,5)P2 is an essential general regulator of TORC1. Moreover, the subcellular location where PI(3,5)P2 regulates TORC1 was not known. Here we report that PI(3,5)P2 is required for TORC1 activity in yeast and regulates TORC1 on the vacuole (lysosome). Furthermore, we show that the TORC1 substrate, Sch9 (a homologue of mammalian S6K), is recruited to the vacuole by direct interaction with PI(3,5)P2, where it is phosphorylated by TORC1. Of importance, we find that PI(3,5)P2 is required for multiple downstream pathways via TORC1-dependent phosphorylation of additional targets, including Atg13, the modification of which inhibits autophagy, and phosphorylation of Npr1, which releases its inhibitory function and allows nutrient-dependent endocytosis. These findings reveal PI(3,5)P2 as a general regulator of TORC1 and suggest that PI(3,5)P2 provides a platform for TORC1 signaling from lysosomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号