首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   619篇
  免费   54篇
  2022年   6篇
  2021年   7篇
  2019年   5篇
  2018年   5篇
  2017年   5篇
  2016年   17篇
  2015年   11篇
  2014年   26篇
  2013年   44篇
  2012年   23篇
  2011年   36篇
  2010年   35篇
  2009年   33篇
  2008年   28篇
  2007年   19篇
  2006年   36篇
  2005年   16篇
  2004年   19篇
  2003年   16篇
  2002年   28篇
  2001年   15篇
  2000年   19篇
  1999年   17篇
  1998年   9篇
  1997年   11篇
  1996年   8篇
  1995年   3篇
  1994年   6篇
  1993年   5篇
  1992年   11篇
  1991年   6篇
  1990年   12篇
  1989年   13篇
  1988年   9篇
  1987年   13篇
  1986年   4篇
  1985年   7篇
  1984年   9篇
  1983年   4篇
  1982年   4篇
  1981年   4篇
  1980年   6篇
  1978年   8篇
  1977年   6篇
  1975年   8篇
  1974年   6篇
  1973年   3篇
  1972年   3篇
  1971年   8篇
  1969年   4篇
排序方式: 共有673条查询结果,搜索用时 218 毫秒
31.
Glutamate Dehydrogenase 1 (GDH), encoded by the Glud1 gene in rodents, is a mitochondrial enzyme critical for maintaining glutamate homeostasis at the tripartite synapse. Our previous studies indicate that the hippocampus may be particularly vulnerable to GDH deficiency in central nervous system (CNS). Here, we first asked whether mice with a homozygous deletion of Glud1 in CNS (CNS‐Glud1 ?/? mice) express different levels of glutamate in hippocampus, and found elevated glutamate as well as glutamine in dorsal and ventral hippocampus, and increased glutamine in medial prefrontal cortex (mPFC). l ‐serine and d ‐serine, which contribute to glutamate homeostasis and NMDA receptor function, are increased in ventral but not dorsal hippocampus, and in mPFC. Protein expression levels of the GABA synthesis enzyme glutamate decarboxylase (GAD) GAD67 were decreased in the ventral hippocampus as well. Behavioral analysis revealed deficits in visual, spatial and social novelty recognition abilities, which require intact hippocampal‐prefrontal cortex circuitry. Finally, hippocampus‐dependent contextual fear retrieval was deficient in CNS‐Glud1 ?/? mice, and c‐Fos expression (indicative of neuronal activation) in the CA1 pyramidal layer was reduced immediately following this task. These data point to hippocampal subregion‐dependent disruption in glutamate homeostasis and excitatory/inhibitory balance, and to behavioral deficits that support a decline in hippocampal‐prefrontal cortex connectivity. Together with our previous data, these findings also point to different patterns of basal and activity‐induced hippocampal abnormalities in these mice. In sum, GDH contributes to healthy hippocampal and PFC function; disturbed GDH function is relevant to several psychiatric and neurological disorders.  相似文献   
32.
In tropical regions, rainfall gradients often explain the abundance and distribution of plant species. For example, many tree and liana species adapted to seasonal drought are more abundant and diverse in seasonally-dry forests, characterized by long periods of seasonal water deficit. Mean annual precipitation (MAP) is commonly used to explain plant distributions across climate gradients. However, the relationship between MAP and plant distribution is often weak, raising the question of whether other seasonal precipitation patterns better explain plant distributions in seasonally-dry forests. In this study, we examine the relationship between liana abundance and multiple metrics of seasonal and annual rainfall distribution to test the hypothesis that liana density and diversity increase with increasing seasonal drought along a rainfall gradient across the isthmus of Panama. We found that a normalized seasonality index, which combines MAP and the variability of monthly rainfall throughout the year, was a significant predictor of both liana density and species richness, whereas MAP, rainfall seasonality and the mean dry season precipitation (MDP) were far weaker predictors. The strong response of lianas to the normalized seasonality index indicates that, in addition to the total annual amount of rainfall, how rainfall is distributed throughout the year is an important determinant of the hydrological conditions that favor liana proliferation. Our findings imply that changes in annual rainfall and rainfall seasonality will determine the future distribution and abundance of lianas. Models that aim to predict future plant diversity, distribution, and abundance may need to move beyond MAP to a more detailed understanding of rainfall variability at sub-annual timescales.  相似文献   
33.
Burgos  E. F.  Vadell  M. V.  Bellomo  C. M.  Martinez  V. P.  Salomon  O. D.  Gómez Villafañe  I. E. 《EcoHealth》2021,18(4):429-439
EcoHealth - Orthohantaviruses (genus Orthohantavirus, family Hantaviridae) are the etiologic agents of Hantavirus Pulmonary Syndrome in the Americas. In South America, orthohantaviruses are highly...  相似文献   
34.
35.
Migration of extravillous trophoblasts (EVT) into decidua and myometrium is a critical process in the conversion of maternal spiral arterioles and establishing placenta perfusion. EVT migration is affected by cell-to-cell communication and oxygen tension. While the release of exosomes from placental cells has been identified as a significant pathway in materno-fetal communication, the role of placental-derived exosomes in placentation has yet to be established. The aim of this study was to establish the effect of oxygen tension on the release and bioactivity of cytotrophoblast (CT)-derived exosomes on EVT invasion and proliferation. CT were isolated from first trimester fetal tissue (n = 12) using a trypsin-deoxyribonuclease-dispase/Percoll method. CT were cultured under 8%, 3% or 1% O2 for 48 h. Exosomes from CT-conditioned media were isolated by differential and buoyant density centrifugation. The effect of oxygen tension on exosome release (µg exosomal protein/106cells/48 h) and bioactivity were established. HTR-8/SVneo (EVT) were used as target cells to establish the effect (bioactivity) of exosomes on invasion and proliferation as assessed by real-time, live-cell imaging (Incucyte™). The release and bioactivity of CT-derived exosomes were inversely correlated with oxygen tension (p<0.001). Under low oxygen tensions (i.e. 1% O2), CT-derived exosomes promoted EVT invasion and proliferation. Proteomic analysis of exosomes identified oxygen-dependent changes in protein content. We propose that in response to changes in oxygen tension, CTs modify the bioactivity of exosomes, thereby, regulating EVT phenotype. Exosomal induction of EVT migration may represent a normal process of placentation and/or an adaptive response to placental hypoxia.  相似文献   
36.

Background

Carboxyethylpyrrole (CEP) adducts are oxidative modifications derived from docosahexaenoate-containing lipids that are elevated in ocular tissues and plasma in age-related macular degeneration (AMD) and in rodents exposed to intense light. The goal of this study was to determine whether light-induced CEP adducts and autoantibodies are modulated by pretreatment with AL-8309A under conditions that prevent photo-oxidative damage of rat retina. AL-8309A is a serotonin 5-HT1A receptor agonist.

Methods

Albino rats were dark adapted prior to blue light exposure. Control rats were maintained in normal cyclic light. Rats were injected subcutaneously 3x with 10 mg/kg AL-8309A (2 days, 1 day and 0 hours) before light exposure for 6 h (3.1 mW/cm2, λ=450 nm). Animals were sacrificed immediately following light exposure and eyes, retinas and plasma were collected. CEP adducts and autoantibodies were quantified by Western analysis or ELISA.

Results

ANOVA supported significant differences in mean amounts of CEP adducts and autoantibodies among the light + vehicle, light + drug and dark control groups from both retina and plasma. Light-induced CEP adducts in retina were reduced ~20% following pretreatment with AL-8309A (n = 62 rats, p = 0.006) and retinal CEP immunoreactivity was less intense by immunohistochemistry. Plasma levels of light-induced CEP adducts were reduced at least 30% (n = 15 rats, p = 0.004) by drug pretreatment. Following drug treatment, average CEP autoantibody titer in light exposed rats (n = 22) was unchanged from dark control levels, and ~20% (p = 0.046) lower than in vehicle-treated rats.

Conclusions

Light-induced CEP adducts in rat retina and plasma were significantly decreased by pretreatment with AL-8309A. These results are consistent with and extend previous studies showing AL-8309A reduces light-induced retinal lesions in rats and support CEP biomarkers as possible tools for monitoring the efficacy of select therapeutics.  相似文献   
37.
38.
The plant immune receptor FLAGELLIN SENSING 2 (FLS2) is present at the plasma membrane and is internalized following activation of its ligand flagellin (flg22). We show that ENDOSOMAL SORTING COMPLEX REQUIRED FOR TRANSPORT (ESCRT)-I subunits play roles in FLS2 endocytosis in Arabidopsis. VPS37-1 co-localizes with FLS2 at endosomes and immunoprecipitates with the receptor upon flg22 elicitation. Vps37-1 mutants are reduced in flg22-induced FLS2 endosomes but not in endosomes labeled by Rab5 GTPases suggesting a defect in FLS2 trafficking rather than formation of endosomes. FLS2 localizes to the lumen of multivesicular bodies, but this is altered in vps37-1 mutants indicating compromised endosomal sorting of FLS2 by ESCRT-I loss-of-function. VPS37-1 and VPS28-2 are critical for immunity against bacterial infection through a role in stomatal closure. Our findings identify that VPS37-1, and likewise VPS28-2, regulate late FLS2 endosomal sorting and reveals that ESCRT-I is critical for flg22-activated stomatal defenses involved in plant immunity.  相似文献   
39.
Obesity is a chronic inflammatory disease that weakens macrophage innate immune response to infections. Since M1 polarization is crucial during acute infectious diseases, we hypothesized that diet-induced obesity inhibits M1 polarization of macrophages in the response to bacterial infections. Bone marrow macrophages (BMMΦ) from lean and obese mice were exposed to live Porphyromonas gingivalis (P. gingivalis) for three incubation times (1 h, 4 h and 24 h). Flow cytometry analysis revealed that the M1 polarization was inhibited after P. gingivalis exposure in BMMΦ from obese mice when compared with BMMΦ from lean counterparts. Using a computational approach in conjunction with microarray data, we identified switching genes that may differentially control the behavior of response pathways in macrophages from lean and obese mice. The two most prominent switching genes were thrombospondin 1 and arginase 1. Protein expression levels of both genes were higher in obese BMMΦ than in lean BMMΦ after exposure to P. gingivalis. Inhibition of either thrombospondin 1 or arginase 1 by specific inhibitors recovered the M1 polarization of BMMΦ from obese mice after P. gingivalis exposure. These data indicate that thrombospondin 1 and arginase 1 are important bacterial response genes, whose regulation is altered in macrophages from obese mice.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号