首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   861篇
  免费   113篇
  2021年   8篇
  2018年   11篇
  2016年   11篇
  2015年   26篇
  2014年   18篇
  2013年   28篇
  2012年   31篇
  2011年   26篇
  2010年   22篇
  2009年   27篇
  2008年   29篇
  2007年   23篇
  2006年   30篇
  2005年   41篇
  2004年   29篇
  2003年   22篇
  2002年   22篇
  2001年   31篇
  2000年   28篇
  1999年   25篇
  1998年   16篇
  1997年   13篇
  1996年   8篇
  1995年   12篇
  1994年   14篇
  1992年   18篇
  1991年   18篇
  1990年   10篇
  1989年   12篇
  1988年   25篇
  1987年   25篇
  1986年   23篇
  1985年   12篇
  1984年   19篇
  1983年   14篇
  1982年   16篇
  1981年   8篇
  1979年   15篇
  1978年   23篇
  1977年   10篇
  1976年   12篇
  1975年   20篇
  1974年   22篇
  1973年   9篇
  1972年   7篇
  1971年   8篇
  1970年   15篇
  1968年   10篇
  1967年   12篇
  1966年   8篇
排序方式: 共有974条查询结果,搜索用时 146 毫秒
91.
Wine yeast starters that contain a mixture of different industrial yeasts with various properties may soon be introduced to the market. The mechanisms underlying the interactions between the different strains in the starter during alcoholic fermentation have never been investigated. We identified and investigated some of these interactions in a mixed culture containing two yeast strains grown under enological conditions. The inoculum contained the same amount (each) of a strain of Saccharomyces cerevisiae and a natural hybrid strain of S. cerevisiae and Saccharomyces uvarum. We identified interactions that affected biomass, by-product formation, and fermentation kinetics, and compared the redox ratios of monocultures of each strain with that of the mixed culture. The redox status of the mixed culture differed from that of the two monocultures, showing that the interactions between the yeast strains involved the diffusion of metabolite(s) within the mixed culture. Since acetaldehyde is a potential effector of fermentation, we investigated the kinetics of acetaldehyde production by the different cultures. The S. cerevisiae-S. uvarum hybrid strain produced large amounts of acetaldehyde for which the S. cerevisiae strain acted as a receiving strain in the mixed culture. Since yeast response to acetaldehyde involves the same mechanisms that participate in the response to other forms of stress, the acetaldehyde exchange between the two strains could play an important role in inhibiting some yeast strains and allowing the growth of others. Such interactions could be of particular importance in understanding the ecology of the colonization of complex fermentation media by S. cerevisiae.  相似文献   
92.
How microtubules act to position the plane of cell division during cytokinesis is a topic of much debate. Recently, we showed that a subpopulation of stable microtubules extends past chromosomes and interacts with the cell cortex at the site of furrowing, suggesting that these stabilized microtubules may stimulate contractility. To test the hypothesis that stable microtubules can position furrows, we used taxol to rapidly suppress microtubule dynamics during various stages of mitosis in PtK1 cells. Cells with stabilized prometaphase or metaphase microtubule arrays were able to initiate furrowing when induced into anaphase by inhibition of the spindle checkpoint. In these cells, few microtubules contacted the cortex. Furrows formed later than usual, were often aberrant, and did not progress to completion. Images showed that furrowing correlated with the presence of one or a few stable spindle microtubule plus ends at the cortex. Actin, myosin II, and anillin were all concentrated in these furrows, demonstrating that components of the contractile ring can be localized by stable microtubules. Inner centromere protein (INCENP) was not found in these ingressions, confirming that INCENP is dispensable for furrow positioning. Taxol-stabilization of the numerous microtubule-cortex interactions after anaphase onset delayed furrow initiation but did not perturb furrow positioning. We conclude that taxol-stabilized microtubules can act to position the furrow and that loss of microtubule dynamics delays the timing of furrow onset and prevents completion. We discuss our findings relative to models for cleavage stimulation.  相似文献   
93.
94.
Peroxiredoxin VI (PrxVI) is a bifunctional enzyme with non-selenium glutathione peroxidase and Ca2+-independent acidic phospholipase A2 activities. We demonstrate that transfection-mediated PrxVI overexpression protects immortalized human WI-38 and murine NIH3T3 fibroblasts against cytotoxic doses of tert-butylhydroperoxide and H2O2. Mutants for either glutathione peroxidase or phospholipase A2 activity show that glutathione peroxidase but not phospholipase A2 activity is required to promote cell survival after stress. Also, ectopic PrxVI overexpression does not protect telomerase-stabilized WI-38 fibroblasts against stress-induced premature senescence.  相似文献   
95.
Under anaerobiosis, the mitochondrion of Saccharomyces cerevisiae is restricted to unstructured promitochondria. These promitochondria provide unknown metabolic functions that are required for growth. Since high glucose concentrations are mainly fermented by S. cerevisiae during stationary phase (due to nitrogen starvation), an optimized promitochondria isolation procedure was investigated. Firstly, the unusual promitochondria ultrastructure was checked in intact cells by electron microscopy using a cryo-fixation and freeze-substitution method. The rapid response of anaerobic cells toward oxygen justified the adoption of several critical steps, especially during spheroplasting. Control of spheroplasting was accompanied by a systematic analysis of spheroplast integrity, which greatly influence the final quality of promitochondria. Despite the presence of remnant respiratory chain components under anaerobiosis, characterization of isolated promitochondria by high-resolution respirometry did not reveal any antimycin A- and myxothiazol-sensitive NADH and NADPH oxidase activities. Moreover, the existence of a cyanide-sensitive and non-phosphorylating NADH-dependent oxygen consumption in promitochondria was demonstrated. Nevertheless, promitochondria only slightly contribute to the overall oxygen consumption capacity observed in highly glucose-repressed anaerobic cells.  相似文献   
96.
Overexpression of the constitutive chemokine receptor CXCR4 has been shown to contribute to the accumulation of leukocytes at sites of chronic inflammation. Glucocorticoids are widely used to treat inflammatory disorders such as uveitis to considerable effect, yet paradoxically have been reported to increase CXCR4 expression in vitro. We show here that ocular lymphocytes isolated from patients with uveitis who had been treated with topical glucocorticoids expressed highly elevated levels of CXCR4. The up-regulation of CXCR4 could be reproduced in vitro by culture of CD4(+) T cells with aqueous humor (AqH), indicating a role for the ocular microenvironment rather than preferential recruitment of CXCR4(+) cells. Untreated uveitis and noninflammatory AqH up-regulated CXCR4 to a limited extent; this was dependent on TGF-beta2. However, the highest levels of CXCR4 both in vivo and in vitro were found in the glucocorticoid-treated patients. Glucocorticoids appeared to be directly responsible for the induction of CXCR4 in treated patients, as the glucocorticoid receptor antagonist RU38486 inhibited the in vitro up-regulation by AqH from these patients. Dexamethasone selectively up-regulated CXCR4 in vitro, but not any of a wide range of other chemokine receptors. CXCL12, the ligand for CXCR4, was present in AqH under noninflammatory conditions, but the levels were low in untreated uveitis and undetectable in treated uveitis AqH. The importance of these results for the treatment of HIV patients with glucocorticoids is discussed as well as a role for glucocorticoid-induced CXCR4 up-regulation and CXCL12 down-regulation in controlling the migration of lymphocyte populations, resulting in resolution of inflammation.  相似文献   
97.
Forces in the spindle that align and segregate chromosomes produce a steady poleward flux of kinetochore microtubules (MTs [kMTs]) in higher eukaryotes. In several nonmammalian systems, flux is driven by the tetrameric kinesin Eg5 (kinesin 5), which slides antiparallel MTs toward their minus ends. However, we find that the inhibition of kinesin 5 in mammalian cultured cells (PtK1) results in only minor reduction in the rate of kMT flux from approximately 0.7 to approximately 0.5 microm/min, the same rate measured in monopolar spindles that lack antiparallel MTs. These data reveal that the majority of poleward flux of kMTs in these cells is not driven by Eg5. Instead, we favor a polar "pulling-in" mechanism in which a depolymerase localized at kinetochore fiber minus ends makes a major contribution to poleward flux. One candidate, Kif2a (kinesin 13), was detected at minus ends of fluxing kinetochore fibers. Kif2a remains associated with the ends of K fibers upon disruption of the spindle by dynein/dynactin inhibition, and these K fibers flux.  相似文献   
98.
Nuclear movement before karyogamy in eukaryotes is known as pronuclear migration or as nuclear congression in Saccharomyces cerevisiae. In this study, S. cerevisiae is used as a model system to study microtubule (MT)-dependent nuclear movements during mating. We find that nuclear congression occurs through the interaction of MT plus ends rather than sliding and extensive MT overlap. Furthermore, the orientation and attachment of MTs to the shmoo tip before cell wall breakdown is not required for nuclear congression. The MT plus end-binding proteins Kar3p, a class 14 COOH-terminal kinesin, and Bik1p, the CLIP-170 orthologue, localize to plus ends in the shmoo tip and initiate MT interactions and depolymerization after cell wall breakdown. These data support a model in which nuclear congression in budding yeast occurs by plus end MT capture and depolymerization, generating forces sufficient to move nuclei through the cytoplasm. This is the first evidence that MT plus end interactions from oppositely oriented organizing centers can provide the force for organelle transport in vivo.  相似文献   
99.
A pilot scale whole cell process was developed for the enantioselective 1,2-reduction of prochiral alpha,beta-unsaturated ketone to (R) allylic alcohol using Candida chilensis. Initial development showed high enantiomeric excess (EE > 95%) but low product yield (10%). Process development, using a combination of statistically designed screening and optimization experiments, improved the desired alcohol yield to 90%. The fermentation growth stage, particularly medium composition and growth pH, had a significant impact on the bioconversion while process characterization identified diverse challenges including the presence of multiple enzymes, substrate/product toxicity, and biphasic cellular morphology. Manipulating the fermentation media allowed control of the whole cell morphology to a predominantly unicellular broth, away from the viscous pseudohyphae, which were detrimental to the bioconversion. The activity of a competing enzyme, which produced the undesired saturated ketone and (R) saturated alcohol, was minimized to < or =5% by controlling the reaction pH, temperature, substrate concentration, and biomass level. Despite the toxicity effects limiting the volumetric productivity, a reproducible and scaleable process was demonstrated at pilot scale with high enantioselectivity (EE > 95%) and overall yield greater than 80%. This was the preferred route compared to a partially purified process using ultra centrifugation, which led to improved volumetric productivity but reduced yield (g/day). The whole cell approach proved to be a valuable alternative to chemical reduction routes, as an intermediate step for the asymmetric synthesis of an integrin receptor antagonist for the inhibition of bone resorption and treatment of osteoporosis.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号