首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   917篇
  免费   55篇
  国内免费   5篇
  2024年   2篇
  2023年   9篇
  2022年   21篇
  2021年   63篇
  2020年   17篇
  2019年   27篇
  2018年   21篇
  2017年   22篇
  2016年   30篇
  2015年   43篇
  2014年   53篇
  2013年   75篇
  2012年   71篇
  2011年   52篇
  2010年   56篇
  2009年   38篇
  2008年   51篇
  2007年   46篇
  2006年   40篇
  2005年   33篇
  2004年   37篇
  2003年   22篇
  2002年   21篇
  2001年   15篇
  2000年   7篇
  1999年   11篇
  1998年   8篇
  1997年   3篇
  1996年   6篇
  1994年   4篇
  1993年   3篇
  1992年   3篇
  1991年   8篇
  1990年   4篇
  1989年   6篇
  1988年   5篇
  1987年   4篇
  1986年   6篇
  1985年   5篇
  1984年   4篇
  1983年   5篇
  1982年   2篇
  1980年   1篇
  1979年   2篇
  1978年   4篇
  1976年   4篇
  1975年   2篇
  1973年   1篇
  1971年   1篇
  1968年   2篇
排序方式: 共有977条查询结果,搜索用时 15 毫秒
21.
Plant and Soil - Success in agronomic biofortification of maize and wheat is highly variable. This study aimed to elucidate the differences in uptake and translocation of foliar-applied zinc (Zn)...  相似文献   
22.
23.
Neurochemical Research - Alzheimer's disease (AD) is age-dependent neurological disorder with progressive loss of cognition and memory. This multifactorial disease is characterized by...  相似文献   
24.

Plants face different types of stresses, including biotic and abiotic stresses. Among various abiotic stress, low-temperature stress alters various morphological, cytological, physiological, and other biochemical processes in plants. To thrive in such condition’s plants must adopt some strategy. Out of various strategies, the approach of using plant growth regulators (PGRs) gained a prominent role in the alleviation of multiple stresses. Salicylic acid, application triggers tolerance to both biotic and abiotic stresses via regulation of various morpho-physiological, cytological, and biochemical attributes. SA is shown to alleviate and regulate the various cold-induced changes. Both endogenous and exogenously applied SA show an imperative role in the alleviation of cold-induced changes by activating multiple signaling pathways like ABA-dependent or independent pathway, Ca2+ signaling pathway, mitogen-activated protein kinase (MAPKs) pathway, reactive oxygen species (ROS), and reactive nitrogen species (RNS) pathways. Activation of these pathways leads to the amelioration of the cold-induced changes by increasing production of antioxidants, osmolytes, HSPs and other cold-responsive proteins like LEA, dehydrins, AFPs, PR proteins, and various other proteins. This review describes the tolerance of cold stress by SA in plants through the involvement of different stress signaling pathways.

  相似文献   
25.
The use of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is limited in drug discovery and cardiac disease mechanism studies due to cell immaturity. Micro-scaled grooves can promote the maturation of cardiomyocytes by aligning them in order, but the mechanism of cardiomyocytes alignment has not been studied. From the level of calcium activity, gene expression and cell morphology, we verified that the W20H5 grooves can effectively promote the maturation of cardiomyocytes. The transient receptor potential channels (TRP channels) also play an important role in the maturation and development of cardiomyocytes. These findings support the engineered hPSC-CMs as a powerful model to study cardiac disease mechanism and partly mimic the myocardial morphological development. The important role of the TRP channels in the maturation and development of myocardium is first revealed.  相似文献   
26.
27.
Cluster Computing - Based on the algorithm structure, each metaheuristic algorithm may have its pros and cons, which may result in high performance in some problems and low functionality in some...  相似文献   
28.
International Journal of Peptide Research and Therapeutics - The original version of the article unfortunately contained a typo in co-author name.  相似文献   
29.
Lepidoptera is the second most diverse insect order outnumbered only by the Coeleptera. Acetylcholinesterase (AChE) is the major target site for insecticides. Extensive use of insecticides, to inhibit the function of this enzyme, have resulted in the development of insecticide resistance. Complete knowledge of the target proteins is very important to know the cause of resistance. Computational annotation of insect acetylcholinesterase can be helpful for the characterization of this important protein. Acetylcholinesterase of fourteen lepidopteran insect pest species was annotated by using different bioinformatics tools. AChE in all the species was hydrophilic and thermostable. All the species showed lower values for instability index except L. orbonalis, S. exigua and T. absoluta. Highest percentage of Arg, Asp, Asn, Gln and Cys were recorded in P. rapae. High percentage of Cys and Gln might be reason for insecticide resistance development in P. rapae. Phylogenetic analysis revealed the AChE in T. absoluta, L. orbonalis and S. exigua are closely related and emerged from same primary branch. Three functional motifs were predicted in eleven species while only two were found in L. orbonalis, S. exigua and T. absoluta. AChE in eleven species followed secretory pathway and have signal peptides. No signal peptides were predicted for S. exigua, L. orbonalis and T. absoluta and follow non secretory pathway. Arginine methylation and cysteine palmotylation was found in all species except S. exigua, L. orbonalis and T. absoluta. Glycosylphosphatidylinositol (GPI) anchor was predicted in only nine species.  相似文献   
30.
Barley (Hordeum vulgare L.) is a major cereal grain and is known as a halophyte (a halophyte is a salt-tolerant plant that grows in soil or waters of high salinity). We therefore conducted a pot experiment to explore plant growth and biomass, photosynthetic pigments, gas exchange attributes, stomatal properties, oxidative stress and antioxidant response and their associated gene expression and absorption of ions in H. Vulgare. The soil used for this analysis was artificially spiked at different salinity concentrations (0, 50, 100 and 150 mM) and different levels of ascorbic acid (AsA) were supplied to plants (0, 30 and 60 mM) shortly after germination of the seed. The results of the present study showed that plant growth and biomass, photosynthetic pigments, gas exchange parameters, stomatal properties and ion uptake were significantly (p < 0.05) reduced by salinity stress, whereas oxidative stress was induced in plants by generating the concentration of reactive oxygen species (ROS) in plant cells/tissues compared to plants grown in the control treatment. Initially, the activity of antioxidant enzymes and relative gene expression increased to a saline level of 100 mM, and then decreased significantly (P < 0.05) by increasing the saline level (150 mM) in the soil compared to plants grown at 0 mM of salinity. We also elucidated that negative impact of salt stress in H. vulgare plants can overcome by the exogenous application of AsA, which not only increased morpho-physiological traits but decreased oxidative stress in the plants by increasing activities of enzymatic antioxidants. We have also explained the negative effect of salt stress on H. vulgare can decrease by exogenous application of AsA, which not only improved morpho-physiological characteristics, ions accumulation in the roots and shoots of the plants, but decreased oxidative stress in plants by increasing antioxidant compounds (enzymatic and non-enzymatic). Taken together, recognizing AsA's role in nutrient uptake introduces new possibilities for agricultural use of this compound and provides a valuable basis for improving plant tolerance and adaptability to potential salinity stress adjustment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号