首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4330篇
  免费   550篇
  2022年   38篇
  2021年   70篇
  2020年   48篇
  2019年   51篇
  2018年   61篇
  2017年   73篇
  2016年   94篇
  2015年   171篇
  2014年   172篇
  2013年   211篇
  2012年   285篇
  2011年   242篇
  2010年   162篇
  2009年   138篇
  2008年   232篇
  2007年   215篇
  2006年   193篇
  2005年   183篇
  2004年   184篇
  2003年   187篇
  2002年   194篇
  2001年   115篇
  2000年   80篇
  1999年   89篇
  1998年   66篇
  1997年   58篇
  1996年   37篇
  1995年   47篇
  1994年   53篇
  1993年   54篇
  1992年   57篇
  1991年   64篇
  1990年   66篇
  1989年   67篇
  1988年   49篇
  1987年   58篇
  1986年   43篇
  1985年   56篇
  1984年   51篇
  1983年   51篇
  1982年   38篇
  1981年   32篇
  1980年   34篇
  1979年   34篇
  1978年   33篇
  1977年   33篇
  1975年   23篇
  1974年   34篇
  1973年   26篇
  1972年   26篇
排序方式: 共有4880条查询结果,搜索用时 203 毫秒
151.
152.
Genes for tRNALys5 from Drosophila melanogaster.   总被引:2,自引:1,他引:1       下载免费PDF全文
The sequences of two cloned genes from Drosophila which hybridize with tRNALys5 are reported. One gene, in plasmid pDt39, has a sequence which corresponds to the sequence of tRNA. The other gene, in pDt59R, differs in three nucleotides pairs. Both plasmids are transcribed in vitro with extracts of Drosophila Kc cells to give full-sized tRNA precursors with four additional nucleotides at the 5'-end as well as truncated molecules containing 35 nucleotides. This premature termination occurs in a block of four T residues within the mature coding region. Sequences flanking the tRNA genes show little in common except for the blocks of five or more T-residues beyond the 3'-end of the gene. pDt39 hybridizes to 84AB on the polytene chromosomes of Drosophila and pDt59R hybridizes to 29A.  相似文献   
153.
154.
Changes in activities of photosynthetic enzymes and photochemical processes were followed with aging of vegetative and flag leaves of wheat (Triticum aestivum L. cv Roy). Activities of stromal enzymes began to decline prior to photochemical activities. In general, total soluble protein and the activities of ribulose-1,5-bisphosphate carboxylase and NADP-triose-phosphate dehydrogenase declined in parallel and at an earlier age than leaf chlorophyll (Chl), leaf photosynthesis, and photosynthetic electron transport activity. Leaves appeared to lose whole chloroplasts as opposed to a general degradation of all chloroplasts based on three lines of evidence: (a) electron transport activity calculated on an area basis declined much earlier than the same data expressed on a Chl basis; (b) Chl content per chloroplast was similar for mature and senescent tissue; and (c) the absorbance at 550 nanometers (light scattering) per unit of Chl remained essentially constant until the end of senescence. Chloroplasts did, however, undergo some modifications before they were lost (e.g. loss of stromal enzyme activities), but the reduction in leaf photosynthesis was apparently caused by a loss of whole chloroplasts.  相似文献   
155.
Endogenous synaptic vesicle alpha- and beta-tubulin were shown to be the major substrates for a Ca2+-calmodulin-regulated protein kinase system in enriched synaptic vesicle preparations from rat cortex as determined by two-dimensional gel electrophoresis and peptide mapping. The activation of this endogenous tubulin kinase system was dependent on Ca2+ and the Ca2+ binding protein, calmodulin. Under maximally stimulated conditions, approximately 40% of the tubulin present in enriched synaptic vesicles was phosphorylated within less than 50 s by the vesicle Ca2+-calmodulin kinase. Evidence is presented indicating that the Ca2+-calmodulin tubulin kinase is an enzyme system distinct from previously described cyclic AMP protein kinases. alpha-Tubulin and beta-tubulin were identified as major components of previously designated vesicle phosphorylation bands DPH-L and DPH-M. The Ca2+-calmodulin tubulin kinase is very labile and specialized isolation procedures were necessary to retain activity. Ca2+-activated synaptic vesicle tubulin phosphorylation correlated with vesicle neurotransmitter release. Depolarization-dependent Ca2+ uptake in intact synaptosomes simultaneously stimulated the release of neurotransmitters and the phosphorylation of synaptic vesicle alpha- and beta-tubulin. The results indicate that regulation of the synaptic vesicle tubulin kinase by Ca2+ and calmodulin may play a role in the functional utilization of synaptic vesicle tubulin and may mediate some of the effects of Ca2+ on vesicle function and neurosecretion.  相似文献   
156.
Evidence is presented that, under conditions of 4.7 M NH4Cl and 10 mM Mg-ATP where no subunit dissociation can be detected by transport methods, a dynamic equilibrium exists in subfragment 1 between the associated and dissociated subunits. This is readily discerned by the formation of hybrid subfragment 1 species when a subfragment 1 isozyme is incubated with excess free light chains of the alternate isozyme. A similar process occurs with p-N,N'-phenylenedimaleimide (pPDM)-modified subfragment 1 containing [14C]Mg-ADP, but in this case, although extensive amounts of hybrid are formed, no loss of the trapped nucleotide is observed. Subunit scrambling without loss of the trapped nucleotide is apparent from incubating pPDM-SF1(A2)-[14C]Mg-ADP with unmodified SF1(A1) under similar conditions since the mixture subsequently contains SF1(A1), SF1(A2)h, pPDM-SF1(A1)h-[14C]Mg-ADP and pPDM-SF1(A2)-[14C]Mg-ADP. These data show that the nucleotide trapped in the presumptive active site does not escape during the dissociation-reassociation cycle, and suggest that the ATPase site resides solely on the heavy chain.  相似文献   
157.
Evidence is presented that under physiological conditions of ionic strength and temperature, where myosin Subfragment 1 is hydrolyzing MgATP, the interaction between its subunits is extremely labile. Incubation of [3H]N-ethylmaleimide-SF1(A1) with N-ethylmaleimide-SF1(A2) in the presence of 10 mM MgATP at 37 degrees C resulted in the exchange of subunits between these isozymes. This is readily discernible from the subunit composition and distribution of the 3H label after separation of the isozymes by ion exchange chromatography. Moreover, incubation of unmodified SF1(A1) or SF1(A2) with the free Alkali light chains A2 and A1, respectively, under the same conditions led to the formation of significant amounts of the hybrid species. These findings suggest that in vivo the Alkali light chain-heavy chain interaction of Subfragment 1 is in a state of dynamic equilibrium between associated and dissociated states.  相似文献   
158.
159.
The (K+,Mg2+)-ATPase was partially purified from a plasma membrane fraction from corn roots (WF9 × Mol7) and stored in liquid N2 without loss of activity. Specific activity was increased 4-fold over that of the plasma membrane fraction. ATPase activity resembled that of the plasma membrane fraction with certain alterations in cation sensitivity. The enzyme required a divalent cation for activity (Co2+ > Mg2+ > Mn2+ > Zn2+ > Ca2+) when assayed at 3 millimolar ATP and 3 millimolar divalent cation at pH 6.3. When assayed in the presence of 3 millimolar Mg2+, the enzyme was further activated by monovalent cations (K+, NH4+, Rb+ Na+, Cs+, Li+). The pH optima were 6.5 and 6.3 in the absence and presence of 50 millimolar KCl, respectively. The enzyme showed simple Michaelis-Menten kinetics for the substrate ATP-Mg, with a Km of 1.3 millimolar in the absence and 0.7 millimolar in the presence of 50 millimolar KCl. Stimulation by K+ approached simple Michaelis-Menten kinetics, with a Km of approximately 4 millimolar KCl. ATPase activity was inhibited by sodium orthovanadate. Half-maximal inhibition was at 150 and 35 micromolar in the absence and presence of 50 millimolar KCl. The enzyme required the substrate ATP. The rate of hydrolysis of other substrates, except UDP, IDP, and GDP, was less than 20% of ATP hydrolysis. Nucleoside diphosphatase activity was less than 30% of ATPase activity, was not inhibited by vanadate, was not stimulated by K+, and preferred Mn2+ to Mg2+. The results demonstrate that the (K+,Mg2+)-ATPase can be clearly distinguished from nonspecific phosphohydrolase and nucleoside diphosphatase activities of plasma membrane fractions prepared from corn roots.  相似文献   
160.
The present study of compares the effects of various inhibitors of arachidonate metabolism on mouse thyroid cyclo-oxygenase and lipoxygenase activities and thyrotropin-augmented cyclic-AMP accumulation. Mouse thyroid homogenate converts [1-14C]- arachidonate to several products of the cyclo-oxygenase pathway as well as one major product of the lipoxygenase pathway, 12-L-hydroxyeicosatetraenoic acid (12-Hete). Prostaglandin (PG) formation in thyroid homogenates is inhibited by 1-10 microM indomethacin and etya. 12-HETE accumulation is reduced by 91%, 83% and 20% by 5 microM ETYA, 15-HETE, and indomethacin, respectively. Thyrotropin-stimulated cyclic-AMP accumulation, measured in whole thyroid lobes by radioimmunoassay, is reduced by 45% and 73% by 50 microM and 100 microM ETYA, respectively; indomethacin is without effect at these concentrations. 15-HETE reduces thyrotropin-augmented cyclic-AMP accumulation by 57% and 100 microM. In product inhibition studies, 10 microM 12-HETE reduced the formation of radiolabeled 12-HETE by 20%. 10 microM PGE2, PGF2 alpha or PGD2 had no effect on [1-14C]-PG formation. 12-HETE, however, reduced PG synthesis by 76% at 10 microM. This is the first report implicating the arachidonate lipoxygenase pathway in thyrotropin action at the level of cyclic-AMP regulation. Additionally, our finding that 12-HETE inhibits prostaglandin synthesis suggests that the cyclo-oxygenase and lipoxygenase pathways in the mouse thyroid may be highly integrated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号