首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1132篇
  免费   91篇
  2024年   2篇
  2023年   11篇
  2022年   21篇
  2021年   48篇
  2020年   30篇
  2019年   28篇
  2018年   33篇
  2017年   34篇
  2016年   39篇
  2015年   76篇
  2014年   83篇
  2013年   72篇
  2012年   120篇
  2011年   88篇
  2010年   58篇
  2009年   50篇
  2008年   67篇
  2007年   61篇
  2006年   39篇
  2005年   34篇
  2004年   44篇
  2003年   44篇
  2002年   35篇
  2001年   9篇
  2000年   3篇
  1999年   8篇
  1998年   5篇
  1997年   7篇
  1996年   6篇
  1995年   10篇
  1994年   5篇
  1993年   11篇
  1992年   4篇
  1991年   8篇
  1990年   3篇
  1989年   4篇
  1988年   2篇
  1987年   1篇
  1985年   3篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1978年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   3篇
排序方式: 共有1223条查询结果,搜索用时 250 毫秒
51.
MARCO is a bacteria-binding macrophage-specific scavenger receptor that plays a role in innate immune response. MARCO has short intracellular and transmembrane domains, as well as a large extracellular domain composed of a spacer domain, a long collagenous domain, and a C-terminal scavenger receptor cysteine-rich domain (SRCR), domain V. As yet, no specific function has been assigned to the SRCR domain of scavenger receptors. In the present study, we generated several human and mouse MARCO variants with deletions or single amino acid substitutions and localized the primary bacteria-binding region to domain V. Furthermore, analysis of the MARCO variants containing only portions of domain V demonstrated a crucial role for an arginine-rich segment for this function. More precisely, the motif RXR was identified as an essential element for high-affinity bacterial binding. The results indicate that the binding properties of MARCO differ from those of the other class A scavenger receptors, SR-A and SRCL, whose ligand-binding function has been localized to the collagenous domain.  相似文献   
52.
53.
Survival of Mycobacterium bovis after ingestion by protozoa would provide an environmental reservoir for infection of cattle. We have shown that M. bovis survived ingestion by Acanthamoeba castellanii. In contrast, two strains of M. bovis BCG did not survive well within Acanthamoeba.  相似文献   
54.
Ethanol oxidation by nicotinoprotein alcohol dehydrogenase (np-ADH) from the bacterium Amycolatopsis methanolica is inhibited by trans-4-(N,N-dimethylamino)-cinnamaldehyde through direct binding to the catalytic zinc ion in a substrate-like geometry. This binding is accompanied by a characteristic red shift of the aldehyde absorbance from 398 nm to 467 nm. Np-ADH is structurally related to mammalian ADH class I, and a model of np-ADH shows how the cinnamaldehyde derivative can be accommodated in the active site of the nicotinoprotein, correlating the structural and enzymological data.  相似文献   
55.
Sugar beet plants regenerated from UV-treated calluses were examined by restriction fragment length polymorphism (RFLP) analysis to determine the extent of somaclonal variation occurring at the DNA level. In total, 50 random sugar beet DNA sequences were used to screen 42 somaclones for genetic alterations. Three polymorphisms were detected among the 7 644 alleles analysed. From these data a mutation frequency of 0.03 ± 0.02% per allele was estimated. This frequency is in agreement with similar studies of somaclonal DNA variation using molecular markers and lies in the upper range of the spontaneous gene mutation frequencies found in plants. The two probegenotype combinations showing independent polymorphisms, were further analysed using the restriction enzymes Bam HI, Eco RI, Eco RV and Hind III. Both polymorphisms are likely to result from structural rearrangements rather than from point mutations. Differences in methylation among 10 of the investigated somaclones were tested for by comparing Hpa II and Msp I generated RFLP patterns. The somaclones showed extensive methylation, but no differences in their degree of methylation. Cytological analysis revealed 34 diploid, 8 tetraploid, but no aneuploid plants.  相似文献   
56.
57.
Defects in intracellular transport are implicated in the pathogenesis of Alzheimer’s disease (AD). Hook proteins are a family of cytoplasmic linker proteins that participate in endosomal transport. In this study we show that Hook1 and Hook3 are expressed in neurons while Hook2 is predominantly expressed in astrocytes. Furthermore, Hook proteins are associated with pathological hallmarks in AD; Hook1 and Hook3 are localized to tau aggregates and Hook2 to glial components within amyloid plaques. Additionally, the expression of Hook3 is reduced in AD. Modelling of Hook3 deficiency in cultured cells leads to slowing of endosomal transport and increases β-amyloid production. We propose that Hook3 plays a role in pathogenic events exacerbating AD.  相似文献   
58.
BackgroundThe relative importance of risk factor reduction in healthy people (primary prevention) versus that in patients with coronary heart disease (secondary prevention) has been debated. We aimed to quantify the contribution of the two.MethodologyWe used the previously validated IMPACT model to estimate contributions from primary prevention (reducing risk factors in the population, particularly smoking, cholesterol and systolic blood pressure) and from secondary prevention (reducing risk factors in coronary heart disease patients) in the Swedish population.ConclusionsThe largest effects on mortality came from primary prevention, giving markedly larger mortality reductions than secondary prevention.  相似文献   
59.
60.
Malassezia is a unique lipophilic genus in class Malasseziomycetes in Ustilaginomycotina, (Basidiomycota, fungi) that otherwise consists almost exclusively of plant pathogens. Malassezia are typically isolated from warm-blooded animals, are dominant members of the human skin mycobiome and are associated with common skin disorders. To characterize the genetic basis of the unique phenotypes of Malassezia spp., we sequenced the genomes of all 14 accepted species and used comparative genomics against a broad panel of fungal genomes to comprehensively identify distinct features that define the Malassezia gene repertoire: gene gain and loss; selection signatures; and lineage-specific gene family expansions. Our analysis revealed key gene gain events (64) with a single gene conserved across all Malassezia but absent in all other sequenced Basidiomycota. These likely horizontally transferred genes provide intriguing gain-of-function events and prime candidates to explain the emergence of Malassezia. A larger set of genes (741) were lost, with enrichment for glycosyl hydrolases and carbohydrate metabolism, concordant with adaptation to skin’s carbohydrate-deficient environment. Gene family analysis revealed extensive turnover and underlined the importance of secretory lipases, phospholipases, aspartyl proteases, and other peptidases. Combining genomic analysis with a re-evaluation of culture characteristics, we establish the likely lipid-dependence of all Malassezia. Our phylogenetic analysis sheds new light on the relationship between Malassezia and other members of Ustilaginomycotina, as well as phylogenetic lineages within the genus. Overall, our study provides a unique genomic resource for understanding Malassezia niche-specificity and potential virulence, as well as their abundance and distribution in the environment and on human skin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号