首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1131篇
  免费   92篇
  1223篇
  2024年   2篇
  2023年   11篇
  2022年   21篇
  2021年   48篇
  2020年   30篇
  2019年   28篇
  2018年   33篇
  2017年   34篇
  2016年   39篇
  2015年   76篇
  2014年   83篇
  2013年   72篇
  2012年   120篇
  2011年   88篇
  2010年   58篇
  2009年   50篇
  2008年   67篇
  2007年   61篇
  2006年   39篇
  2005年   34篇
  2004年   44篇
  2003年   44篇
  2002年   35篇
  2001年   9篇
  2000年   3篇
  1999年   8篇
  1998年   5篇
  1997年   7篇
  1996年   6篇
  1995年   10篇
  1994年   5篇
  1993年   11篇
  1992年   4篇
  1991年   8篇
  1990年   3篇
  1989年   4篇
  1988年   2篇
  1987年   1篇
  1985年   3篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1978年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   3篇
排序方式: 共有1223条查询结果,搜索用时 0 毫秒
11.
12.

SUMMARY

Long-chain-length hydrophobic acyl residues play a vital role in a multitude of essential biological structures and processes. They build the inner hydrophobic layers of biological membranes, are converted to intracellular storage compounds, and are used to modify protein properties or function as membrane anchors, to name only a few functions. Acyl thioesters are transferred by acyltransferases or transacylases to a variety of different substrates or are polymerized to lipophilic storage compounds. Lipases represent another important enzyme class dealing with fatty acyl chains; however, they cannot be regarded as acyltransferases in the strict sense. This review provides a detailed survey of the wide spectrum of bacterial acyltransferases and compares different enzyme families in regard to their catalytic mechanisms. On the basis of their studied or assumed mechanisms, most of the acyl-transferring enzymes can be divided into two groups. The majority of enzymes discussed in this review employ a conserved acyltransferase motif with an invariant histidine residue, followed by an acidic amino acid residue, and their catalytic mechanism is characterized by a noncovalent transition state. In contrast to that, lipases rely on completely different mechanism which employs a catalytic triad and functions via the formation of covalent intermediates. This is, for example, similar to the mechanism which has been suggested for polyester synthases. Consequently, although the presented enzyme types neither share homology nor have a common three-dimensional structure, and although they deal with greatly varying molecule structures, this variety is not reflected in their mechanisms, all of which rely on a catalytically active histidine residue.  相似文献   
13.
Cyclin-dependent kinases (CDKs) are at the heart of eukaryotic cell-cycle control. The yeast Cdc2/CDC28 PSTAIRE kinase and its orthologs such as the mammalian Cdk1 have been found to be indispensable for cell-cycle progression in all eukaryotes investigated so far. CDKA;1 is the only PSTAIRE kinase in the flowering plant Arabidopsis and can rescue Cdc2/CDC28 mutants. Here, we show that cdka;1 null mutants are viable but display specific cell-cycle and developmental defects, e.g., in S phase entry and stem cell maintenance. We unravel that the crucial function of CDKA;1 is the control of the plant Retinoblastoma homolog RBR1 and that codepletion of RBR1 and CDKA;1 rescued most defects of cdka;1 mutants. Our work further revealed a basic cell-cycle control system relying on two plant-specific B1-type CDKs, and the triple cdk mutants displayed an early germline arrest. Taken together, our data indicate divergent functional differentiation of Cdc2-type kinases during eukaryote evolution.  相似文献   
14.
In this study, we report the development of a novel, rationally designed immunostimulatory adjuvant based on chemical conjugation of CpG oligodeoxynucleotide (ODN) to the nontoxic B subunit of cholera toxin (CTB). We demonstrate that the immunostimulatory effects of CpG can be dramatically enhanced by conjugation to CTB. Thus, CpG ODN linked to CTB (CTB-CpG) was shown to be a more potent stimulator of proinflammatory cytokine and chemokine responses in murine splenocytes and human PBMCs than those of CpG ODN alone in vitro. The presence of CpG motif, but not modified phosphorothioate ODN backbone, was found to be critical for the enhanced immunostimulatory effects of CTB-CpG. Our mode-of-action studies, including studies on cells from specifically gene knockout mice suggest that similar to CpG, CTB-CpG exerts its immunostimulatory effects through a TLR9/MyD88- and NF-kappaB-dependent pathway. Surprisingly, and as opposed to CpG ODN, CTB-CpG-induced immunity was shown to be independent of endosomal acidification and resistant to inhibitory ODN. Furthermore, preincubation of CTB-CpG with GM1 ganglioside reduced the immunostimulatory effects of CTB-CpG to those of CpG ODN alone. Interestingly, conjugation of CpG ODN to CTB confers an enhanced cross-species activity to CpG ODN. Furthermore, using tetanus toxoid as a vaccine Ag for s.c. immunization, CTB-CpG markedly enhanced the Ag-specific IgG Ab response and altered the specific pattern of Ab isotypes toward a Th1 type response. To our knowledge, CTB is the first nontoxic derivative of microbial toxins discovered that when chemically linked to CpG remarkably augments the CpG-mediated immune responses.  相似文献   
15.
16.
Dopamine is a neurotransmitter that plays a major role in a variety of brain functions, as well as in disorders such as Parkinson disease and schizophrenia. In cultured astrocytes, we have found that dopamine induces sporadic cytoplasmic calcium ([Ca2+]c) signals. Importantly, we show that the dopamine-induced calcium signaling is receptor-independent in midbrain, cortical, and hippocampal astrocytes. We demonstrate that the calcium signal is initiated by the metabolism of dopamine by monoamine oxidase, which produces reactive oxygen species and induces lipid peroxidation. This stimulates the activation of phospholipase C and subsequent release of calcium from the endoplasmic reticulum via the inositol 1,4,5-trisphosphate receptor mechanism. These findings have major implications on the function of astrocytes that are exposed to dopamine and may contribute to understanding the physiological role of dopamine.  相似文献   
17.

Background

Asthma leads to structural changes in the airways, including the modification of extracellular matrix proteins such as tenascin-C. The role of tenascin-C is unclear, but it might act as an early initiator of airway wall remodelling, as its expression is increased in the mouse and human airways during allergic inflammation. In this study, we examined whether Th1 or Th2 cells are important regulators of tenascin-C in experimental allergic asthma utilizing mice with impaired Th1 (STAT4-/-) or Th2 (STAT6-/-) immunity.

Methods

Balb/c wildtype (WT), STAT4-/- and STAT6-/- mice were sensitized with intraperitoneally injected ovalbumin (OVA) followed by OVA or PBS airway challenge. Airway hyperreactivity (AHR) was measured and samples were collected. Real time PCR and immunohistochemistry were used to study cytokines and differences in the expression of tenascin-C. Tenascin-C expression was measured in human fibroblasts after treatment with TNF-α and IFN-γ in vitro.

Results

OVA-challenged WT mice showed allergic inflammation and AHR in the airways along with increased expression of TNF-α, IFN-γ, IL-4 and tenascin-C in the lungs. OVA-challenged STAT4-/- mice exhibited elevated AHR and pulmonary eosinophilia. The mRNA expression of TNF-α and IFN-γ was low, but the expression of IL-4 was significantly elevated in these mice. OVA-challenged STAT6-/- mice had neither AHR nor pulmonary eosinophilia, but had increased expression of mRNA for TNF-α, IFN-γ and IL-4. The expression of tenascin-C in the lungs of OVA-challenged STAT4-/- mice was weaker than in those of OVA-challenged WT and STAT6-/- mice suggesting that TNF-α and IFN-γ may regulate tenascin-C expression in vivo. The stimulation of human fibroblasts with TNF-α and IFN-γ induced the expression of tenascin-C confirming our in vivo findings.

Conclusions

Expression of tenascin-C is significantly attenuated in the airways of STAT4-/- mice, which may be due to the impaired secretion of TNF-α and IFN-γ in these mice.  相似文献   
18.
19.

Background and Purpose

In 2007, the WHO classification of brain tumors was extended by three new entities of glioneuronal tumors: papillary glioneuronal tumor (PGNT), rosette-forming glioneuronal tumor of the fourth ventricle (RGNT) and glioneuronal tumor with neuropil-like islands (GNTNI). Focusing on clinical characteristics and outcome, the authors performed a comprehensive individual patient data (IPD) meta-analysis of the cases reported in literature until December 2012.

Methods

PubMed, Embase and Web of Science were searched for peer-reviewed articles reporting on PGNT, RGNT, and GNTNI using predefined keywords.

Results

95 publications reported on 182 patients (PGNT, 71; GNTNI, 26; RGNT, 85). Median age at diagnosis was 23 years (range 4–75) for PGNT, 27 years (range 6–79) for RGNT, and 40 years (range 2–65) for GNTNI. Ninety-seven percent of PGNT and 69% of GNTNI were located in the supratentorial region, 23% of GNTNI were in the spinal cord, and 80% of RGNT were localized in the posterior fossa. Complete resection was reported in 52 PGNT (73%), 36 RGNT (42%), and 7 GNTNI (27%) patients. Eight PGNT, 3 RGNT, and 12 GNTNI patients were treated with chemo- and/or radiotherapy as the primary postoperative treatment. Follow-up data were available for 132 cases. After a median follow-up time of 1.5 years (range 0.2–25) across all patients, 1.5-year progression-free survival rates were 52±12% for GNTNI, 86±5% for PGNT, and 100% for RGNT. The 1.5-year overall-survival were 95±5%, 98±2%, and 100%, respectively.

Conclusions

The clinical understanding of the three new entities of glioneuronal tumors, PGNT, RGNT and GNTNI, is currently emerging. The present meta-analysis will hopefully contribute to a delineation of their diagnostic, therapeutic, and prognostic profiles. However, the available data do not provide a solid basis to define the optimum treatment approach. Hence, a central register should be established.  相似文献   
20.
HLA-B*5701 is the host factor most strongly associated with slow HIV-1 disease progression, although rates can vary within this group. Underlying mechanisms are not fully understood but likely involve both immunological and virological dynamics. The present study investigated HIV-1 in vivo evolution and epitope-specific CD8(+) T cell responses in six HLA-B*5701 patients who had not received antiretroviral treatment, monitored from early infection for up to 7 years. The subjects were classified as high-risk progressors (HRPs) or low-risk progressors (LRPs) based on baseline CD4(+) T cell counts. Dynamics of HIV-1 Gag p24 evolution and multifunctional CD8(+) T cell responses were evaluated by high-resolution phylogenetic analysis and polychromatic flow cytometry, respectively. In all subjects, substitutions occurred more frequently in flanking regions than in HLA-B*5701-restricted epitopes. In LRPs, p24 sequence diversity was significantly lower; sequences exhibited a higher degree of homoplasy and more constrained mutational patterns than HRPs. The HIV-1 intrahost evolutionary rate was also lower in LRPs and followed a strict molecular clock, suggesting neutral genetic drift rather than positive selection. Additionally, polyfunctional CD8(+) T cell responses, particularly to TW10 and QW9 epitopes, were more robust in LRPs, who also showed significantly higher interleukin-2 (IL-2) production in early infection. Overall, the findings indicate that HLA-B*5701 patients with higher CD4 counts at baseline have a lower risk of HIV-1 disease progression because of the interplay between specific HLA-linked immune responses and the rate and mode of viral evolution. The study highlights the power of a multidisciplinary approach, integrating high-resolution evolutionary and immunological data, to understand mechanisms underlying HIV-1 pathogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号